Math, asked by shaijastanly, 1 year ago

Find the multiplicative inverse of √5+3i

Answers

Answered by YouNDi
3
your ans is 1..bcz with hlp of multiplicative invers we ger result 1
Answered by neetu0585
17
Multiplicative Inverse of
 \sqrt{5}  + 3i \: is  \\ \:  \frac{1}{ \sqrt{5}  + 3i}  \\  now \: rationalised \: it \:  \\ =  \frac{1}{ \sqrt{5}  + 3i}  \times  \frac{(  \sqrt{5}   - 3i)}{ \sqrt{5} - 3i }   \\  =  \frac{( \sqrt{5} - 3i) }{( { (\sqrt{5}) }^{2} -  {(3i)}^{2} ) }  \\ \\  =  \frac{ \sqrt{5} - 3i }{5 + 9}  \\  =  \frac{ \sqrt{5}  - 3i}{14}  \\  =  \frac{ \sqrt{5} }{14}  -  \frac{3i}{14}  \\ multiplicative\: inverse \: of \\ ( \sqrt{5}  + 3i) = \frac{ \sqrt{5} }{14}  -  \frac{3i}{14} \\
Similar questions