Find the multiplicative inverse of the following:
(i) 3 + 4i
(ii) √2 + 5i
(iii) 4 - √7i
Answers
Answer:
(I) 3+4i
so, multiplicative inverse of 3+4i =1/3+4i
=1(3-4i) /(3+4i) (3-4i)
=3-4i/9+16
=3-4i/25
(ii) √2+5i
so, multiplicative inverse of √2+5i
=1/√2+5i
=1(√2-5i) /2+25
=√2-5i/27
(iii) 4-√7i
so, multiplicative inverse of 4-√7i
=1/4-√7i
=1(4+√7i) /16+7
=4+√7i/23
Answer:
HEY BUDDY HOPE IT HELPS YOU
Step-by-step explanation:
FIND THE MULTIPLICATIVE INVERSE OF THE FOLLOWING :
( i ) 3 + 4i
Multiplicative inverse of 3 + 4i
= 1 / 3 + 4i
= 1 ( 3 - 4i ) / ( 3 + 4i ) ( 3 - 4i )
= 3 - 4i / 9 + 16
= 3 - 4i / 25
THE MULTIPLICATIVE INVERSE OF 3 + 4i
= 3 - 4i / 25
( ii ) √2 + 5i
Multiplicative inverse of √2 + 5i
= 1 / √2 + 5i
= 1 ( √2 - 5i ) / ( √2 + 5i ) ( √2 - 5i )
= √2 - 5i / 2 + 25
= √2 - 5i / 27
THE MULTIPLICATIVE INVERSE OF √2 + 5i
= √2 - 5i / 27
( iii ) 4 - √7i
Multiplicative inverse of 4 - √7i
= 1 / 4 - √7i
= 1 ( 4 + √7i ) / ( 4 - √7i ) ( 4 + √7i )
= 4 + √7i / 16 + 7
= 4 + √7i / 23
THE MULTIPLICATIVE INVERSE OF 4 - √7i
= 4 + √7i / 23