Find the multiplicative reciprocal of 1of3/6
Answers
Answer )-
Let the multiplicative inverse of 5−i be a+bi
Let the multiplicative inverse of 5−i be a+bi Therefore we have (5−i)(a+bi)=1
Let the multiplicative inverse of 5−i be a+bi Therefore we have (5−i)(a+bi)=1⇒5a+b+i(5b−a)=1
Let the multiplicative inverse of 5−i be a+bi Therefore we have (5−i)(a+bi)=1⇒5a+b+i(5b−a)=1 ⇒5a+b=1 and 5b−a=0
Let the multiplicative inverse of 5−i be a+bi Therefore we have (5−i)(a+bi)=1⇒5a+b+i(5b−a)=1 ⇒5a+b=1 and 5b−a=0⇒a=5b
Let the multiplicative inverse of 5−i be a+bi Therefore we have (5−i)(a+bi)=1⇒5a+b+i(5b−a)=1 ⇒5a+b=1 and 5b−a=0⇒a=5b Substitute this in 5a+b=1, we get
Let the multiplicative inverse of 5−i be a+bi Therefore we have (5−i)(a+bi)=1⇒5a+b+i(5b−a)=1 ⇒5a+b=1 and 5b−a=0⇒a=5b Substitute this in 5a+b=1, we get b=
Let the multiplicative inverse of 5−i be a+bi Therefore we have (5−i)(a+bi)=1⇒5a+b+i(5b−a)=1 ⇒5a+b=1 and 5b−a=0⇒a=5b Substitute this in 5a+b=1, we get b= 26
Let the multiplicative inverse of 5−i be a+bi Therefore we have (5−i)(a+bi)=1⇒5a+b+i(5b−a)=1 ⇒5a+b=1 and 5b−a=0⇒a=5b Substitute this in 5a+b=1, we get b= 261
Let the multiplicative inverse of 5−i be a+bi Therefore we have (5−i)(a+bi)=1⇒5a+b+i(5b−a)=1 ⇒5a+b=1 and 5b−a=0⇒a=5b Substitute this in 5a+b=1, we get b= 261
Let the multiplicative inverse of 5−i be a+bi Therefore we have (5−i)(a+bi)=1⇒5a+b+i(5b−a)=1 ⇒5a+b=1 and 5b−a=0⇒a=5b Substitute this in 5a+b=1, we get b= 261 and a=
Let the multiplicative inverse of 5−i be a+bi Therefore we have (5−i)(a+bi)=1⇒5a+b+i(5b−a)=1 ⇒5a+b=1 and 5b−a=0⇒a=5b Substitute this in 5a+b=1, we get b= 261 and a= 16
Let the multiplicative inverse of 5−i be a+bi Therefore we have (5−i)(a+bi)=1⇒5a+b+i(5b−a)=1 ⇒5a+b=1 and 5b−a=0⇒a=5b Substitute this in 5a+b=1, we get b= 261 and a= 165
Let the multiplicative inverse of 5−i be a+bi Therefore we have (5−i)(a+bi)=1⇒5a+b+i(5b−a)=1 ⇒5a+b=1 and 5b−a=0⇒a=5b Substitute this in 5a+b=1, we get b= 261 and a= 165
Let the multiplicative inverse of 5−i be a+bi Therefore we have (5−i)(a+bi)=1⇒5a+b+i(5b−a)=1 ⇒5a+b=1 and 5b−a=0⇒a=5b Substitute this in 5a+b=1, we get b= 261 and a= 165
Let the multiplicative inverse of 5−i be a+bi Therefore we have (5−i)(a+bi)=1⇒5a+b+i(5b−a)=1 ⇒5a+b=1 and 5b−a=0⇒a=5b Substitute this in 5a+b=1, we get b= 261 and a= 165 Therefore, multiplicative inverse is
Let the multiplicative inverse of 5−i be a+bi Therefore we have (5−i)(a+bi)=1⇒5a+b+i(5b−a)=1 ⇒5a+b=1 and 5b−a=0⇒a=5b Substitute this in 5a+b=1, we get b= 261 and a= 165 Therefore, multiplicative inverse is 26
Let the multiplicative inverse of 5−i be a+bi Therefore we have (5−i)(a+bi)=1⇒5a+b+i(5b−a)=1 ⇒5a+b=1 and 5b−a=0⇒a=5b Substitute this in 5a+b=1, we get b= 261 and a= 165 Therefore, multiplicative inverse is 26(5+i)
Let the multiplicative inverse of 5−i be a+bi Therefore we have (5−i)(a+bi)=1⇒5a+b+i(5b−a)=1 ⇒5a+b=1 and 5b−a=0⇒a=5b Substitute this in 5a+b=1, we get b= 261 and a= 165 Therefore, multiplicative inverse is 26(5+i)
Let the multiplicative inverse of 5−i be a+bi Therefore we have (5−i)(a+bi)=1⇒5a+b+i(5b−a)=1 ⇒5a+b=1 and 5b−a=0⇒a=5b Substitute this in 5a+b=1, we get b= 261 and a= 165 Therefore, multiplicative inverse is 26(5+i) .