find the nature of roots by calculating the value of discrimination in each case. ☝️
Answers
Step-by-step explanation:
x
2
+10x−7=0
view step
ax^{2}+bx+c=0
\frac{-b±\sqrt{b^{2}-4ac}}{2a}
±
x=\frac{-10±\sqrt{10^{2}-4\left(-7\right)}}{2}
x=
2
−10±
10
2
−4(−7)
view step
10
x=\frac{-10±\sqrt{100-4\left(-7\right)}}{2}
x=
2
−10±
100−4(−7)
view step
-4-7
x=\frac{-10±\sqrt{100+28}}{2}
x=
2
−10±
100+28
view step
10028
x=\frac{-10±\sqrt{128}}{2}
x=
2
−10±
128
view step
128
x=\frac{-10±8\sqrt{2}}{2}
x=
2
−10±8
2
view step
x=\frac{-10±8\sqrt{2}}{2}
±-108\sqrt{2}\approx 11.313708499
x=\frac{8\sqrt{2}-10}{2}
x=
2
8
2
−10
view step
-10+8\sqrt{2}\approx 1.313708499
2
x=4\sqrt{2}-5
x=4
2
−5
view step
x=\frac{-10±8\sqrt{2}}{2}
±8\sqrt{2}\approx 11.313708499
-10
x=\frac{-8\sqrt{2}-10}{2}
x=
2
−8
2
−10
view step
-10-8\sqrt{2}\approx -21.313708499
2
x=-4\sqrt{2}-5
x=−4
2
−5
view step
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)
-5+4\sqrt{2}\approx 0.656854249
x_{1}
-5-4\sqrt{2}\approx -10.656854249
x_{2}
x^{2}+10x-7=\left(x-\left(4\sqrt{2}-5\right)\right)\left(x-\left(-4\sqrt{2}-5\right)\right)
x
2
+10x−7=(x−(4
2
−5))(x−(−4
2
−5))