Math, asked by shandilneetu1979, 6 months ago

Find the nature of roots of the quadratic equation 2x^2 - 4x - 3 = 0 . If real roots exist, find them.​

Answers

Answered by Anonymous
15

Answer :-

To find the nature of roots, we first need to find discrimination (D) -

\sf D = b^2 - 4ac

\sf D = -4^2 - 4 ( -3)(2)

\sf D = 16 + 24

\sf D = 40

Here, D > 0 so the roots of this quadratic equation are real and distinct.

By using quadratic formula :-

\boxed{\rm x = \dfrac{-b \pm \sqrt{b^2 - 4ac} }{2a}}

  • a = 2
  • b = - 4
  • c = - 3

Substituting the value in formula :-

\sf x = \dfrac{-(-4) \pm \sqrt{(-4)^2 - 4(2)(-3)} }{2 \times 2}

\sf x = \dfrac{4 \pm \sqrt{16 + 24} }{4}

\sf x = \dfrac{4 \pm \sqrt{40} }{4}

\sf x = \dfrac{ 4 \pm 2\sqrt{10} }{4}

\boxed{\sf x = 1 +  \dfrac{ \sqrt{10} }{2} \: , 1\:  - \dfrac{ \sqrt{10} }{2}}

Similar questions