Math, asked by menkawish, 1 month ago

Find the nature of solution of the pair of linear equation x - 2y = 5 and 2x - 4y = 1.​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given pair of linear equations is

\rm :\longmapsto\:x - 2y = 5 -  -  - (1)

and

\rm :\longmapsto\:2x - 4y = 1 -  -  - (2)

Consider, Line (1)

\rm :\longmapsto\:x - 2y = 5

Substituting 'x = 0' in the given equation, we get

\rm :\longmapsto\:0 - 2y = 5

\rm :\longmapsto\: - 2y = 5

\rm :\longmapsto\: y =  - 2.5

Substituting 'y = 0' in the given equation, we get

\rm :\longmapsto\:x - 2(0) = 5

\rm :\longmapsto\:x = 5

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf  - 2.5 \\ \\ \sf 5 & \sf 0 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points (0 , - 2.5) & (5 , 0)

➢ See the attachment graph.

Consider, Line (2)

\rm :\longmapsto\:2x - 4y = 1

Substituting 'y = 1' in the given equation, we get

\rm :\longmapsto\:2x - 4 = 1

\rm :\longmapsto\:2x = 1 + 4

\rm :\longmapsto\:2x = 5

\rm :\longmapsto\:x = 2.5

Substituting 'y = 2' in the given equation, we get

\rm :\longmapsto\:2x - 4(2)= 1

\rm :\longmapsto\:2x - 8= 1

\rm :\longmapsto\:2x = 1 + 8

\rm :\longmapsto\:2x = 9

\rm :\longmapsto\:x = 4.5

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 2.5 & \sf 1 \\ \\ \sf 4.5 & \sf 2 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points (2.5 , 1) & (4.5 , 2)

➢ See the attachment graph.

From graph,

We concluded that system of linear equation is inconsistent having no solution.

Attachments:
Similar questions