find the new point of the locus of point P such that PA²+ PB²=PC² where A(1,-2) B(-2,4) C(3,3)
Answers
Step-by-step explanation:
Given:-
PA²+ PB²=PC² where A(1,-2) B(-2,4) C(3,3)
To find:-
find the new point of the locus of point P such that PA²+ PB²=PC² where A(1,-2) B(-2,4) C(3,3).
Solution:-
Let the point on the locus be P(x,y)
and A(1,-2) B(-2,4) C(3,3)
Distance formula=√{(x2-x1)²+(y2-y1)²} units
(x1,y1)=(x,y)=>x1=x;y1=y
(x2,y2)=(1,-2)=>x2=1;y2=-2
PA²=[√{(1-x)²+(-2-y)²}]²
=>PA²=(1-x)²+(-2-y)²
=>PA²=1+x²-2x+4+y²+4y
=>PA²=x²+y²-2x+4y+5------(1)
and
(x1,y1)=(x,y)=>x1=x;y1=y
(x2,y2)=(-2,4)=>x2=-2;y2=4
PB²=[√{(-2-x)²+(4-y)²}]²
=>PB²=(-2-x)²+(4-y)²
=>PB²=4+x²+4x+16+y²-8y
=>PB²=x²+y²+4x-8y+20------(2)
and
(x1,y1)=(x,y)=>x1=x;y1=y
(x2,y2)=(3,3)=>x2=3;y2=3
PC²=[√{(3-x)²+(3-y)²}]²
=>PC²=(3-x)²+(3-y)²
=>PC²=9+x²-6x+9+y²-6y
=>PC²=x²+y²-6x-6y+18------(3)
On adding (1)&(2)
PA²+PB²
=x²+y²-2x+4y+5+x²+y²+4x-8y+20
=>2x²+2y²+2x-4y+25-----(4)
Now we have
PA²+ PB²=PC²
=>2x²+2y²+2x-4y+25=x²+y²-6x-6y+18
= (2x²-x²)+(2y²-y²)+(2x+6x)+(6y-4y)+(25-18)=0
=>x²+y²+8x+2y+7=0
Answer:-
The point of the locus of P=x²+y²+8x+2y+7=0