Find the non zero value's of k for which kx^2+1 -2(k-1)x +x^2 =0 has equal root's .
Hence find the roots.
Answers
Answered by
3
Solution:
______________________________________________________________
Given:
...(i)
____________________________________________________________
To find:
The non-zero value of k,
____________________________________________________________
We know the discriminant formula that:
b² -4ac = 0 (equal roots)
(i)=>
(where a= (k+1)
b = -2(k-1)
c = 1)
=> (-2(k-1))² - 4(k+1)(1) = 0
=> (4(k²-2k+1) - 4(k+1) = 0
=> 4k² - 8k + 4 -4k - 4 = 0
=> 4k² -8k -4k = 0
=> 4k² -12k = 0
=> 4k(k - 3) = 0
=> k -3 = 0
=> ∴ k = 3
_____________________________________________________________
Hope it Helps !!
______________________________________________________________
Given:
...(i)
____________________________________________________________
To find:
The non-zero value of k,
____________________________________________________________
We know the discriminant formula that:
b² -4ac = 0 (equal roots)
(i)=>
(where a= (k+1)
b = -2(k-1)
c = 1)
=> (-2(k-1))² - 4(k+1)(1) = 0
=> (4(k²-2k+1) - 4(k+1) = 0
=> 4k² - 8k + 4 -4k - 4 = 0
=> 4k² -8k -4k = 0
=> 4k² -12k = 0
=> 4k(k - 3) = 0
=> k -3 = 0
=> ∴ k = 3
_____________________________________________________________
Hope it Helps !!
sivaprasath:
Mark as Brainliest
Similar questions