Math, asked by harikachowdary1725, 1 month ago

find the nth derivative of 2x+1/x²–4​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

\bf :\longmapsto\:Let \: y = \dfrac{2x + 1}{ {x}^{2}  - 4}

\rm :\longmapsto\:y = \dfrac{2x + 1}{(x + 2)(x - 2)}

Let we first resolve in to partial fraction.

\bf :\longmapsto\:Let \:  \dfrac{2x + 1}{(x+ 2)(x - 2) } =  \dfrac{a}{x + 2}+  \dfrac{b}{x - 2}  -  - (1)

\rm :\longmapsto\:2x + 1 = a(x - 2) + b(x + 2)

On substituting x = 2, we get

\rm :\longmapsto\:2 \times 2 + 1 = a(2 - 2) + b(2+ 2)

\rm :\longmapsto\:5 = 4b

\rm :\longmapsto\:b =  \dfrac{5}{4} -  -  - (2)

On substituting x = - 2, we get

\rm :\longmapsto\:2( - 2) + 1 = a( - 2 - 2) + b( - 2 + 2)

\rm :\longmapsto\: - 4 + 1 = a( -4)

\rm :\longmapsto\: - 3 = a( -4)

\rm :\longmapsto\:a =  \dfrac{3}{4}  -  -  - (3)

On substituting equation (2) and (3), in equation (1),

\bf :\longmapsto\:\:  \dfrac{2x + 1}{(x+ 2)(x - 2) } =  \dfrac{ \frac{3}{4} }{x + 2}+  \dfrac{ \frac{5}{4} }{x - 2}

So it implies,

\bf :\longmapsto\:\:  \dfrac{2x + 1}{ {x}^{2}  - 4} =  \dfrac{3}{4(x + 2)}+  \dfrac{5}{4(x - 2)}

Hence,

Differentiating n times, we get

\bf :\longmapsto\:\:  \dfrac{ {d}^{n} }{d {x}^{n} }\dfrac{2x + 1}{ {x}^{2}  - 4} = \dfrac{ {d}^{n} }{d {x}^{n} } \dfrac{3}{4(x + 2)}+  \dfrac{ {d}^{n} }{d {x}^{n} }\dfrac{5}{4(x - 2)}

 \rm \:  \:  =  \: \dfrac{3}{4}\dfrac{ {( - 1)}^{n}n !}{ {(x + 2)}^{n + 1} } + \dfrac{5}{4}\dfrac{ {( - 1)}^{n}n !}{ {(x  -  2)}^{n + 1} }

\green{\boxed{ \bf{  \:  \:  \:  \because \: \:\dfrac{ {d}^{n} }{d {x}^{n} }\dfrac{1}{ax + b}  = \dfrac{ {( - 1)}^{n} {a}^{n} n !}{ {(ax + b)}^{n + 1} }  \:  \:  \:  \:  \:  \:  \:  \: }}}

Similar questions