Find the nth derivative of sin 6x cos 4x.
Answers
SOLUTION
TO DETERMINE
The nth derivative of sin 6x cos 4x
FORMULA TO BE IMPLEMENTED
The nth order derivative of sin ax
EVALUATION
Here the given expression
Now
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
1. What is the amplitude of the function f(x) = -3cos(πx)
https://brainly.in/question/26536007
2. Prove that div grad r^n = n(n+1) r^n-2
https://brainly.in/question/24594228
Answer:
SOLUTION
TO DETERMINE
The nth derivative of sin 6x cos 4x
FORMULA TO BE IMPLEMENTED
The nth order derivative of sin ax
\displaystyle \sf{ \frac{ {d}^{n} }{d {x}^{n} }( \sin ax) = {a}^{n} \sin \bigg( \frac{n\pi}{2} + ax\bigg)}
dx
n
d
n
(sinax)=a
n
sin(
2
nπ
+ax)
EVALUATION
Here the given expression
\displaystyle \sf{ \sin 6x \cos 4x }sin6xcos4x
= \displaystyle \sf{ \frac{1}{2} \bigg( 2 \sin 6x \cos 4x\bigg) }=
2
1
(2sin6xcos4x)
= \displaystyle \sf{ \frac{1}{2} \bigg( \sin 10x + \sin 2x\bigg) }=
2
1
(sin10x+sin2x)
Now
\displaystyle \sf{ \frac{ {d}^{n} }{d {x}^{n} } \bigg( \sin 6x \cos 4x \bigg)}
dx
n
d
n
(sin6xcos4x)
= \displaystyle \sf{ \frac{1}{2} \times \frac{ {d}^{n} }{d {x}^{n} }( \sin 10x) + \frac{1}{2} \times \frac{ {d}^{n} }{d {x}^{n} }( \sin 2x)}=
2
1
×
dx
n
d
n
(sin10x)+
2
1
×
dx
n
d
n
(sin2x)
\displaystyle \sf{= \frac{1}{2} \times {10}^{n} \sin \bigg( \frac{n\pi}{2} + 10x\bigg) + \frac{1}{2} \times {10}^{n} \sin \bigg( \frac{n\pi}{2} + 2x\bigg) }=
2
1
×10
n
sin(
2
nπ
+10x)+
2
1
×10
n
sin(
2
nπ
+2x)
\displaystyle \sf{= \frac{ {10}^{n}}{2} \times \Bigg[ \sin \bigg( \frac{n\pi}{2} + 10x\bigg) + \sin \bigg( \frac{n\pi}{2} + 2x\bigg)\Bigg] }=
2
10
n
×[sin(
2
nπ
+10x)+sin