Math, asked by JARVISRISHI1367, 4 months ago

Find the nth derivative of sin 6x cos 4x.

Answers

Answered by pulakmath007
7

SOLUTION

TO DETERMINE

The nth derivative of sin 6x cos 4x

FORMULA TO BE IMPLEMENTED

The nth order derivative of sin ax

 \displaystyle \sf{ \frac{ {d}^{n} }{d {x}^{n} }( \sin ax) =  {a}^{n}   \sin \bigg(  \frac{n\pi}{2}  + ax\bigg)}

EVALUATION

Here the given expression

 \displaystyle \sf{  \sin 6x \cos 4x }

 =  \displaystyle \sf{ \frac{1}{2} \bigg( 2 \sin 6x \cos 4x\bigg) }

 =  \displaystyle \sf{ \frac{1}{2} \bigg(  \sin 10x  + \sin 2x\bigg) }

Now

 \displaystyle \sf{ \frac{ {d}^{n} }{d {x}^{n} } \bigg( \sin 6x \cos 4x \bigg)}

 =  \displaystyle \sf{  \frac{1}{2} \times  \frac{ {d}^{n} }{d {x}^{n} }( \sin 10x) + \frac{1}{2}  \times \frac{ {d}^{n} }{d {x}^{n} }( \sin 2x)}

 \displaystyle \sf{=  \frac{1}{2} \times   {10}^{n}   \sin \bigg(  \frac{n\pi}{2}  + 10x\bigg) + \frac{1}{2} \times   {10}^{n}   \sin \bigg(  \frac{n\pi}{2}  + 2x\bigg) }

 \displaystyle \sf{=  \frac{ {10}^{n}}{2} \times    \Bigg[ \sin \bigg(  \frac{n\pi}{2}  + 10x\bigg) +   \sin \bigg(  \frac{n\pi}{2}  + 2x\bigg)\Bigg]  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. What is the amplitude of the function f(x) = -3cos(πx)

https://brainly.in/question/26536007

2. Prove that div grad r^n = n(n+1) r^n-2

https://brainly.in/question/24594228

Answered by swatijaiswar651
1

Answer:

SOLUTION

TO DETERMINE

The nth derivative of sin 6x cos 4x

FORMULA TO BE IMPLEMENTED

The nth order derivative of sin ax

\displaystyle \sf{ \frac{ {d}^{n} }{d {x}^{n} }( \sin ax) = {a}^{n} \sin \bigg( \frac{n\pi}{2} + ax\bigg)}

dx

n

d

n

(sinax)=a

n

sin(

2

+ax)

EVALUATION

Here the given expression

\displaystyle \sf{ \sin 6x \cos 4x }sin6xcos4x

= \displaystyle \sf{ \frac{1}{2} \bigg( 2 \sin 6x \cos 4x\bigg) }=

2

1

(2sin6xcos4x)

= \displaystyle \sf{ \frac{1}{2} \bigg( \sin 10x + \sin 2x\bigg) }=

2

1

(sin10x+sin2x)

Now

\displaystyle \sf{ \frac{ {d}^{n} }{d {x}^{n} } \bigg( \sin 6x \cos 4x \bigg)}

dx

n

d

n

(sin6xcos4x)

= \displaystyle \sf{ \frac{1}{2} \times \frac{ {d}^{n} }{d {x}^{n} }( \sin 10x) + \frac{1}{2} \times \frac{ {d}^{n} }{d {x}^{n} }( \sin 2x)}=

2

1

×

dx

n

d

n

(sin10x)+

2

1

×

dx

n

d

n

(sin2x)

\displaystyle \sf{= \frac{1}{2} \times {10}^{n} \sin \bigg( \frac{n\pi}{2} + 10x\bigg) + \frac{1}{2} \times {10}^{n} \sin \bigg( \frac{n\pi}{2} + 2x\bigg) }=

2

1

×10

n

sin(

2

+10x)+

2

1

×10

n

sin(

2

+2x)

\displaystyle \sf{= \frac{ {10}^{n}}{2} \times \Bigg[ \sin \bigg( \frac{n\pi}{2} + 10x\bigg) + \sin \bigg( \frac{n\pi}{2} + 2x\bigg)\Bigg] }=

2

10

n

×[sin(

2

+10x)+sin

Similar questions