Find the nth derivative of sin⁴x
Answers
Answered by
1
Answer:
Method-1:
y=sin4x=(eix+e−ix2i)4=116(eix+e−ix)4
⟹y=116(e4ix+e−4ix−4e2ix−4e−2ix+6)
dnydxn=116((4i)ne4ix+(−4i)ne−4ix−4(2i)ne2ix−4(−2i)ne−2ix)
=22n−4ine4ix+(−i)n22n−4e−4ix−2n−2ine2ix−(−i)n2n−2e−2ix
Method-2:
y=sin4x=(1−cos2x2)2=14⋅[1+cos22x−2cos2x]
=14⋅[1+1+cos4x2−2cos2x]
⟹y=18⋅[3+cos4x−4cos2x]
∴y′n=18⋅[4n⋅cos(4x+nπ2)−4⋅2n⋅cos(2x+nπ2
Step-by-step explanation:
I hope it will help you plz follow
Similar questions
English,
2 months ago
History,
2 months ago
Social Sciences,
4 months ago
Political Science,
4 months ago
History,
10 months ago
English,
10 months ago