find the nth derivative of sqrt (ax+b)
Answers
Answered by
6
Step-by-step explanation:
Given that
Lets find the first derivative
Now find second derivative
And so on.
Answered by
0
Step-by-step explanation:
Given that
y=\sqrt ( ax+b )y=
(
ax+b)
Lets find the first derivative
\dfrac{dy}{dx}=\dfrac{1}{2}a ( ax+b )^{-\dfrac{1}{2}}
dx
dy
=
2
1
a(ax+b)
−
2
1
Now find second derivative
\dfrac{d^2y}{dx^2}=-\dfrac{1}{4}a^2 ( ax+b )^{-\dfrac{3}{2}}
dx
2
d
2
y
=−
4
1
a
2
(ax+b)
−
2
3
\dfrac{d^3y}{dx^3}=\dfrac{3}{8}a^3 ( ax+b )^{-\dfrac{5}{2}}
dx
3
d
3
y
=
8
3
a
3
(ax+b)
−
2
5
\dfrac{d^4y}{dx^4}=-\dfrac{15}{16}a^4 ( ax+b )^{-\dfrac{7}{2}}
dx
4
d
4
y
=−
16
15
a
4
(ax+b)
−
2
7
And so on.
Similar questions