Find the nth derivative of x cube log x
Answers
Answer:
here is the answer
Step-by-step explanation:
y= x^3 * logx ….Assume logx by definition = ln x / ln 10
y' = 3x^2 log x +x^3 (1/ ln 10)× (1/x)
= 3x^2 log x +x^2 (1/ ln 10)
y” = 6x log x + 3x^2 (1/ln 10)*(1/x) +2x / ( ln 10)
= 6x log x + 3x(1/ln 10)*(1/x) +2x / ( ln 10)
y”’ = 6 log x+6/ln(10) + 5/ (ln 10) =
y”” =( 6/ ln 10)* (1/x)
y= x^3 * logx ….Assume logx by definition = ln x / ln 10
y= x^3 * logx ….Assume logx by definition = ln x / ln 10y' = 3x^2 log x +x^3 (1/ ln 10)× (1/x)
y= x^3 * logx ….Assume logx by definition = ln x / ln 10y' = 3x^2 log x +x^3 (1/ ln 10)× (1/x)= 3x^2 log x +x^2 (1/ ln 10)
y= x^3 * logx ….Assume logx by definition = ln x / ln 10y' = 3x^2 log x +x^3 (1/ ln 10)× (1/x)= 3x^2 log x +x^2 (1/ ln 10)y” = 6x log x + 3x^2 (1/ln 10)*(1/x) +2x / ( ln 10)
y= x^3 * logx ….Assume logx by definition = ln x / ln 10y' = 3x^2 log x +x^3 (1/ ln 10)× (1/x)= 3x^2 log x +x^2 (1/ ln 10)y” = 6x log x + 3x^2 (1/ln 10)*(1/x) +2x / ( ln 10)= 6x log x + 3x(1/ln 10)*(1/x) +2x / ( ln 10)
y= x^3 * logx ….Assume logx by definition = ln x / ln 10y' = 3x^2 log x +x^3 (1/ ln 10)× (1/x)= 3x^2 log x +x^2 (1/ ln 10)y” = 6x log x + 3x^2 (1/ln 10)*(1/x) +2x / ( ln 10)= 6x log x + 3x(1/ln 10)*(1/x) +2x / ( ln 10)y”’ = 6 log x+6/ln(10) + 5/ (ln 10) =
y= x^3 * logx ….Assume logx by definition = ln x / ln 10y' = 3x^2 log x +x^3 (1/ ln 10)× (1/x)= 3x^2 log x +x^2 (1/ ln 10)y” = 6x log x + 3x^2 (1/ln 10)*(1/x) +2x / ( ln 10)= 6x log x + 3x(1/ln 10)*(1/x) +2x / ( ln 10)y”’ = 6 log x+6/ln(10) + 5/ (ln 10) =y”” =( 6/ ln 10)* (1/x)!-