Math, asked by Rooooooppoo123, 9 months ago

Find the nth derivative of x/(x-1)(2x+1).

Answers

Answered by rocky200216
2

Hope it's helpful to you.

Please mark as Brainlist answer.

Attachments:
Answered by ajajit9217
2

Answer:

The nth derivative of \frac{x}{(x-1)(2x+1)} is  \frac{1}{3}[\frac{(-1)^n*n!}{(x-1)^{n+1}} +\frac{(-1)^n*2^n*n!}{(2x+1)^{n+1}} ]

Step-by-step explanation:

Let y = \frac{x}{(x-1)(2x+1)}

        = \frac{1}{3}[\frac{1}{x-1} +\frac{1}{2x+1} ]

Differentiating with respect to x

=> \frac{dy}{dx} =  \frac{1}{3}[\frac{-1}{(x-1)^2} +\frac{-1*2}{(2x+1)^2} ]                                  (as \frac{d}{dx} (x^{n} ) = nx^{n-1})

Differentiating again with respect to x

=> \frac{d^2y}{dx^2} =  \frac{1}{3}[\frac{-1*(-2)}{(x-1)^3} +\frac{(-1*2)(-2*2)}{(2x+1)^3} ]

Differentiating again with respect to x

=> \frac{d^3y}{dx^3} =  \frac{1}{3}[\frac{-1*(-2)*(-3)}{(x-1)^4} +\frac{(-1*2)(-2*2)(-3*2)}{(2x+1)^4} ]

Similarly, differentiating nth time, we get,

=> \frac{d^ny}{dx^n} =  \frac{1}{3}[\frac{-1*(-2)*(-3). . .(-n)}{(x-1)^{n+1}} +\frac{(-1*2)(-2*2)(-3*2)...(-n*2)}{(2x+1)^{n+1}} ]

          =  \frac{1}{3}[\frac{(-1)^n*n!}{(x-1)^{n+1}} +\frac{(-1)^n*2^n*n!}{(2x+1)^{n+1}} ]

Therefore, the nth derivative of \frac{x}{(x-1)(2x+1)} is  \frac{1}{3}[\frac{(-1)^n*n!}{(x-1)^{n+1}} +\frac{(-1)^n*2^n*n!}{(2x+1)^{n+1}} ]

Similar questions