Math, asked by mm2514, 1 year ago

Find the nth derivative of x3 cosx

Answers

Answered by pulakmath007
9

SOLUTION

TO DETERMINE

The nth derivative of x³ cos x

EVALUATION

Here the given function is

f(x) = x³ cos x

Let u = cos x and v = x³

Then

 \displaystyle \sf{u_n =  \cos  \bigg( \frac{n\pi}{2} + x  \bigg)}

 \sf{v_1 = 3 {x}^{2} }

 \sf{v_2 = 6x }

 \sf{v_3 = 6 }

 \sf{v_n= 0 \:  \:  \: for \:  \: n > 3 }

Thus the function can be rewritten as

f(x) = uv

Differentiating both sides n times with respect to x using Leibnitz theorem we get

 \sf{ {f}^{n}(x) }

 \sf{ = (uv)_n}

 \displaystyle \sf{ =  {}^{n} C_0u_{n}v +{}^{n} C_1u_{n - 1}v_1  +{}^{n} C_2u_{n - 2}v_2 +{}^{n} C_3u_{n}v_3 +  {}^{n} C_4u_{n - 4}v_4 + .. \: .. }

 \displaystyle \sf =  {}^{n} C_0\cos  \bigg( \frac{n\pi}{2} + x  \bigg) {x}^{3}  +{}^{n} C_1\cos  \bigg( \frac{(n - 1)\pi}{2} + x  \bigg)3 {x}^{2} +{}^{n} C_2\cos  \bigg( \frac{(n - 2)\pi}{2} + x  \bigg)6x  +{}^{n} C_3\cos  \bigg( \frac{(n - 3)\pi}{2} + x  \bigg)6  +{}^{n} C_4\cos  \bigg( \frac{(n - 4)\pi}{2} + x  \bigg).0   + .. \: ..

 \displaystyle \sf =  {}^{n} C_0\cos  \bigg( \frac{n\pi}{2} + x  \bigg) {x}^{3}  +{}^{n} C_1\cos  \bigg( \frac{(n - 1)\pi}{2} + x  \bigg)3 {x}^{2} +{}^{n} C_2\cos  \bigg( \frac{(n - 2)\pi}{2} + x  \bigg)6x  +{}^{n} C_3\cos  \bigg( \frac{(n - 3)\pi}{2} + x  \bigg)6

 \displaystyle \sf =  {x}^{3} \cos  \bigg( \frac{n\pi}{2} + x  \bigg) +3n {x}^{2} \cos  \bigg( \frac{(n - 1)\pi}{2} + x  \bigg) +3n(n - 1)x\cos  \bigg( \frac{(n - 2)\pi}{2} + x  \bigg) +n(n - 1)(n - 2)\cos  \bigg( \frac{(n - 3)\pi}{2} + x  \bigg)

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=u^2-v^2,y=2uv find the jacobian of x, y with respect to u and v

https://brainly.in/question/34361788

2. given u=yzx , v= zxy, w =xyz then the value of d(u,v,w)/d(x,y,z) is (a) 0 (b) 1 (c) 2 (d) 4

https://brainly.in/question/34435016

Answered by skamrazh
0

Answer:

The nth derivative of x³ cos x

EVALUATION

Here the given function is

f(x) = x³ cos x

Let u = cos x and v = x³

Then

\displaystyle \sf{u_n = \cos \bigg( \frac{n\pi}{2} + x \bigg)}u

n

=cos(

2

+x)

\sf{v_1 = 3 {x}^{2} }v

1

=3x

2

\sf{v_2 = 6x }v

2

=6x

\sf{v_3 = 6 }v

3

=6

\sf{v_n= 0 \: \: \: for \: \: n > 3 }v

n

=0forn>3

Thus the function can be rewritten as

f(x) = uv

Differentiating both sides n times with respect to x using Leibnitz theorem we get

\sf{ {f}^{n}(x) }f

n

(x)

\sf{ = (uv)_n}=(uv)

n

\displaystyle \sf{ = {}^{n} C_0u_{n}v +{}^{n} C_1u_{n - 1}v_1 +{}^{n} C_2u_{n - 2}v_2 +{}^{n} C_3u_{n}v_3 + {}^{n} C_4u_{n - 4}v_4 + .. \: .. }=

n

C

0

u

n

v+

n

C

1

u

n−1

v

1

+

n

C

2

u

n−2

v

2

+

n

C

3

u

n

v

3

+

n

C

4

u

n−4

v

4

+....

\displaystyle \sf = {}^{n} C_0\cos \bigg( \frac{n\pi}{2} + x \bigg) {x}^{3} +{}^{n} C_1\cos \bigg( \frac{(n - 1)\pi}{2} + x \bigg)3 {x}^{2} +{}^{n} C_2\cos \bigg( \frac{(n - 2)\pi}{2} + x \bigg)6x +{}^{n} C_3\cos \bigg( \frac{(n - 3)\pi}{2} + x \bigg)6 +{}^{n} C_4\cos \bigg( \frac{(n - 4)\pi}{2} + x \bigg).0 + .. \: ..=

n

C

0

cos(

2

+x)x

3

+

n

C

1

cos(

2

(n−1)π

+x)3x

2

+

n

C

2

cos(

2

(n−2)π

+x)6x+

n

C

3

cos(

2

(n−3)π

+x)6+

n

C

4

cos(

2

(n−4)π

+x).0+....

\displaystyle \sf = {}^{n} C_0\cos \bigg( \frac{n\pi}{2} + x \bigg) {x}^{3} +{}^{n} C_1\cos \bigg( \frac{(n - 1)\pi}{2} + x \bigg)3 {x}^{2} +{}^{n} C_2\cos \bigg( \frac{(n - 2)\pi}{2} + x \bigg)6x +{}^{n} C_3\cos \bigg( \frac{(n - 3)\pi}{2} + x \bigg)6=

n

C

0

cos(

2

+x)x

3

+

n

C

1

cos(

2

(n−1)π

+x)3x

2

+

n

C

2

cos(

2

(n−2)π

+x)6x+

n

C

3

cos(

2

(n−3)π

+x)6

\displaystyle \sf = {x}^{3} \cos \bigg( \frac{n\pi}{2} + x \bigg) +3n {x}^{2} \cos \bigg( \frac{(n - 1)\pi}{2} + x \bigg) +3n(n - 1)x\cos \bigg( \frac{(n - 2)\pi}{2} + x \bigg) +n(n - 1)(n - 2)\cos \bigg( \frac{(n - 3)\pi}{2} + x \bigg)=x

3

cos(

2

+x)+3nx

2

cos(

2

(n−1)π

+x)+3n(n−1)xcos(

2

(n−2)π

+x)+n(n−1)(n−2)cos(

2

(n−3)π

+x)

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1.1. If x=u^2-v^2,y=2uv find the jacobian of x, y with respect to u and v

https://brainly.in/question/34361788

2. given u=yzx , v= zxy, w =xyz then the value of d(u,v,w)/d(x,y,z) is (a) 0 (b) 1 (c) 2 (d) 4

https://brainly.in/question/34435016

Similar questions