Math, asked by rejinaram321, 1 month ago

Find the nth derivative of y=1/x^2-6x+8

Answers

Answered by senboni123456
0

Answer:

Step-by-step explanation:

We have,

\tt{y=\dfrac{1}{x^2-6x+8}}

\tt{\implies\,y=\dfrac{1}{x^2-4x-2x+8}}

\tt{\implies\,y=\dfrac{1}{x(x-4)-2(x-4)}}

\tt{\implies\,y=\dfrac{1}{(x-2)(x-4)}}

\sf{\implies\,y=\dfrac{2}{2(x-2)(x-4)}}

\sf{\implies\,y=\dfrac{(x-2)-(x-4)}{2(x-2)(x-4)}}

\sf{\implies\,y=\dfrac{(x-2)}{2(x-2)(x-4)}-\dfrac{(x-4)}{2(x-2)(x-4)}}

\sf{\implies\,y=\dfrac{1}{2(x-4)}-\dfrac{1}{2(x-2)}}

Consider the generalized form

\sf{f(x)=\dfrac{1}{x+a}}

\sf{\implies\,f^{\prime}(x)=\dfrac{(-1)}{(x+a)^2}}

\sf{\implies\,f^{\prime\prime}(x)=\dfrac{(-1)(-2)}{(x+a)^3}}

\sf{\implies\,f^{\prime\prime\prime}(x)=\dfrac{(-1)(-2)(-3)}{(x+a)^4}}

\sf{\implies\,f^{n}(x)=\dfrac{d^n}{dx^n}[f(x)]=\dfrac{(-1)^n\cdot\,n!}{(x+a)^{n+1}}}

So,

\sf{\implies\,y_{n}=\dfrac{(-1)^n\cdot\,n!}{2(x-4)^{n+1}}-\dfrac{(-1)^n\cdot\,n!}{2(x-2)^{n+1}}}

Similar questions