Math, asked by kashishsaini2002brd, 3 months ago

Find the nth differential coefficients of sin(x)log(ax+b)

Answers

Answered by Anonymous
15

Answer:

sin(x)log(ax+b)

Step-by-step explanation:

hope you happy bro..

Answered by ravilaccs
0

Answer:

The nth differential coefficient of sin(x) is given by cos x

The nth differential coefficient of log(ax+b) is given by \frac{d^{n} y}{d x^{2}} =\frac{(-1)^{n-1} \cdot(n-1) ! a^{n}}{(a x+b)^{n}}

Step-by-step explanation:

a) Solution for Sin x

f(x)=\sin x$$\\\therefore f(x+h)=\sin (x+h)$$\\\therefore f(x+h)-f(x)=sin (x+h)-\sin x$$\Rightarrow \frac{f(x+h)-f(x)}{h}\\=\frac{\sin (x+h)-\sin x}{h}$$\Rightarrow \lim _{h \rightarrow 0} \\\frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0}\\  \frac{\sin (x+h)-\sin x}{h}$

\Rightarrow \frac{d}{d x} f(x)=\lim _{h \rightarrow 0}\left[\frac{2 \cos \left(x+\frac{h}{2}\right) \cdot \sin \frac{h}{2}}{h}\right]$\\$\Rightarrow \frac{d}{d x} \sin x=\lim _{h \rightarrow 0} \cos \left(x+\frac{h}{2}\right) \cdot \lim _{h \rightarrow 0}\left(\frac{\sin \frac{h}{2}}{\frac{h}{2}}\right)\\$$=\cos (x+0) \cdot \lim _{\frac{h}{2} \rightarrow 0}\left(\frac{\sin \frac{h}{2}}{\frac{h}{2}}\right) \cdots h \rightarrow 0\\$

\therefore \frac{h}{2} \rightarrow 0$\\$=\cos x .1\\$$\Rightarrow \frac{d}{d x} \sin x=\cos x$

b) Let $y=\log (a x+b)$

Then $\frac{d y}{d x}=\frac{d}{d x}[\log (a x+b)]$

=\frac{1}{a x+b} \cdot \frac{d}{d x}(a x+b)\\$$=\frac{1}{a x+b} \times(a \times 1+0)\\$=\frac{a}{a x+b}$$\frac{d^{2} y}{d x^{2}}\\=\frac{d}{d x}\left(\frac{a}{a x+b}\right)\\$$=a \frac{d}{d x}(a x+b)^{-1}$

\frac{d^{2} y}{d x^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{a}{a x+b}\right)\\$$=a \frac{\mathrm{d}}{\mathrm{dx}}(a x+b)^{-1}\\$$=a(-1)(a x+b)^{-2} \cdot \frac{\mathrm{d}}{\mathrm{dx}}(a x+b)\\$$=\frac{(-1) a}{(a x+b)^{2}} \times(a \times 1+0)\\$$=\frac{(-1) a}{(a x+b)^{2}}$

\frac{d^{3} y}{d x^{3}}=\frac{\mathrm{d}}{\mathrm{dx}}\left[\frac{(-1)^{1} a^{2}}{(a x+b)^{2}}\right]\\$$=(-1)^{1} a^{2} \cdot \frac{\mathrm{d}}{\mathrm{dx}}(a x+b)^{-2}\\$$=(-1)^{1} a^{2} \cdot(-2)(a x+b)^{-3} \cdot \frac{\mathrm{d}}{\mathrm{dx}}(a x+b)\\$$=\frac{(-1)^{2} \cdot 1 \cdot 2 \cdot a^{2}}{(a x+b)^{3}} \times(a \times 1+0)\\$$=\frac{(-1) \cdot 2 \cdot 2 ! a^{3}}{(a x+b)^{3}}$

In general, the $\mathrm{n}^{\text {th }}$ order derivative is given by

$$\frac{d^{n} y}{d x^{2}}=\frac{(-1)^{n-1} \cdot(n-1) ! a^{n}}{(a x+b)^{n}}$$

Similar questions