Math, asked by sahitthya1210, 10 hours ago

find the nth e^x log x​

Answers

Answered by komal1414
0

Answer:

SOLUTION

TO DETERMINE

The n th derivative of

\sf {e}^{x} \log xe

x

logx

EVALUATION

Here the given function is

\sf f(x) = {e}^{x} \log xf(x)=e

x

logx

\sf \: Let \: \: \: u = {e}^{x} \: \: and \: \: v = \log xLetu=e

x

andv=logx

Then f(x) = uv

Now

\sf \:u_n = {e}^{x} \: \: for \: all \: nu

n

=e

x

foralln

Again

\displaystyle \sf \: v_n = \frac{ {( - 1)}^{n - 1} \: (n - 1)!}{ {x}^{n} }v

n

=

x

n

(−1)

n−1

(n−1)!

Now f(x) = uv

Differentiating both sides n times with respect to x using Leibnitz theorem we get

\displaystyle \sf \: {f}^{n}(x) = (uv) _n = \displaystyle \sf\sum\limits_{r = 0}^{n} \: {}^{n} C_ru_{n - r}v_rf

n

(x)=(uv)

n

=

r=0

n

n

C

r

u

n−r

v

r

\displaystyle \sf \implies {f}^{n}(x) = \displaystyle \sf\sum\limits_{r = 0}^{n} \: {}^{n} C_ru_{n - r}v_r⟹f

n

(x)=

r=0

n

n

C

r

u

n−r

v

r

\displaystyle \sf \implies {f}^{n}(x) = {e}^{x} \log x + \displaystyle \sf\sum\limits_{r=1}^{n} \: {}^{n} C_r \: {e}^{x} \: \frac{ {( - 1)}^{r - 1} \: (r - 1)!}{ {x}^{r} }⟹f

n

(x)=e

x

logx+

r=1

n

n

C

r

e

x

x

r

(−1)

r−1

(r−1)!

\displaystyle \sf \implies {f}^{n}(x) = {e}^{x} \log x + {e}^{x} \: \displaystyle \sf\sum\limits_{i=1}^{n} \: {}^{n} C_r \: \frac{ {( - 1)}^{r - 1} \: (r - 1)!}{ {x}^{r} }⟹f

n

(x)=e

x

logx+e

x

i=1

n

n

C

r

x

r

(−1)

r−1

(r−1)!

\displaystyle \sf \implies {f}^{n}(x) = {e}^{x} \bigg \{ \log x + n {x}^{ - 1} - {}^{n} C_2 {x}^{ - 2} + .. \: .. \bigg \}⟹f

n

(x)=e

x

{logx+nx

−1

n

C

2

x

−2

+....}

━━━━━━━━━━━━━━━━

Similar questions