Math, asked by sahilmajhirkl, 6 months ago

Find the nth term and the 12th term of the list of number : 5,2,-1, -4,...​

Answers

Answered by swatisingh93480
0

Answer:

a=5

d=2-5= -3

an=a+(n-1)d

n=n,12

a12= a+(12-1)d

a12= 5+11× -3

a12= 55+(-3)

a12 =52

an = 5+( n-1)× -3

an= 5+(-3n) +3

an= 8 -3n

Answered by Anonymous
4

GIVEN

AP = 5, 2, -1, -4

To Find

Find the nth term and the 12th term of the list.

SOLUTION

We know the formula to find the nth term is,

\large{\underline{\boxed{\sf{a_{n}=a+(n-1)d}}}}

where,

  • \small{\bf{a_{n}\:is\:the\:nth\:term}}
  • a is the first term
  • n is the nth term
  • d is the common difference

Now,

  • a is 5
  • d = (-1) -2 = -3

\large\implies{\sf{a_{n}=a+(n-1)d}}

Putting the values,

\large\implies{\sf{a_{n}=5+(n-1)(-3)}}

Multiplying (n-1) with (-3),

\large\implies{\sf{a_{n}=5+(-3n)-(-3)}}

\large\implies{\sf{a_{n}=5-3n+3}}

\large\implies{\sf{a_{n}=8-3n}}

\large{\underline{\boxed{\therefore{\sf{a_{n}=8-3n.}}}}}

  • Now the 12th term of the list

Putting n=12 in 8-3n,

\large\implies{\sf{a_{12}=8-(3\times12)}}

\large\implies{\sf{a_{12}=8-36}}

\large\implies{\sf{a_{12}=-28}}

\large{\underline{\boxed{\therefore{\sf{a_{12}=-28.}}}}}

\large{\red{\underline{\boxed{\therefore{\bf{1))\:nth\:term\:is\:8-3n.}}}}}}

\large{\red{\underline{\boxed{\therefore{\bf{2))\:12th\:term\:is\:-28.}}}}}}

Similar questions