Math, asked by subitha71, 1 month ago

find the nth term of series
2 \times 3 + 3 \times 4 + 4 \times 5

Answers

Answered by mathdude500
0

\large\underline{\sf{Solution-}}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Now,

Consider,

\rm :\longmapsto\:2 \times 3 +3  \times 4 + 4 \times 5 +  -  -  -  -  -

Thus,

 \bf \:  \:  \:  {n}^{th}  \: term \: of \: 2 \times 3 + 3 \times 4 + 4 \times 5 +  -  -  -

 \sf \:  =  \:  \: ( {n}^{th} \: term \: of \:2, 3, 4, -  -  - ) \times ( {n}^{th} \: term \: of \: 3, 4, 5, -  -  - )

 \sf \:  =  \:  \: \bigg( 2 + (n - 1) \times 1\bigg) \bigg(3 + (n - 1) \times 1 \bigg)

 \sf \:  =  \:  \: \bigg( 2 + (n - 1)\bigg) \bigg(3 + (n - 1) \bigg)

 \sf \:  =  \:  \: \bigg( 2 + n - 1\bigg) \bigg(3 + n - 1\bigg)

 \sf \:  =  \:  \: \bigg( 1 + n \bigg) \bigg(2 + n \bigg)

 \sf \:  =  \:  \: \bigg(n + 1\bigg) \bigg(n + 2\bigg)

\rm\therefore{n}^{th}\:term\:of\: 2 \times 3+3\times 4+4\times5 +- - =(n+1)(n+2)

Additional Information :-

1. Sum of first n natural numbers is

\boxed{\bf\: \displaystyle\sum_{r=1}^n  \bf\: r \:  = \dfrac{n(n + 1)}{2} }

2. Sum of the squares of first n natural numbers is

\boxed{\bf\: \displaystyle\sum_{r=1}^n  \bf\:  {r}^{2}  \:  = \dfrac{n(n + 1)(2n + 1)}{6}}

3. Sum of the cubes of first n natural numbers is

\boxed{\bf\: \displaystyle\sum_{r=1}^n  \bf\:  {r}^{3}  \:  =  {\bigg(\dfrac{n(n + 1)}{2}  \bigg) }^{2} }

Similar questions