Math, asked by Anonymous, 11 months ago

Find the nth term of the Arithmetic Progression:-10,-15,-20,.......?​

Answers

Answered by Anonymous
2

Step-by-step explanation:

-10 , -15 , -20 ,......

In above Arithmetic progression ,

a = -10 , d = -15 + 10 = -5

nth term An = a + (n-1)d

= -10 + (n-1)(-5)

= -10 - 5n + 5

= -5n - 5 = -5(n + 1)

Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{nth\:term=-5n-5}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Arithmethic \: progression(A.P)=  - 10,- 15,- 20,.... \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies nth \: term = ?

• According to given question :

 \tt \circ \: First \: term =  - 10 \\  \\  \tt \circ \: Common \: difference =  - 15 - ( - 10) =  - 5 \\  \\   \bold{As \: we \: know \: that} \\  \tt:  \implies  a_{n} = a + (n - 1)d \\  \\ \tt:  \implies  a_{n} = - 10 + (n - 1) \times  - 5 \\  \\ \tt:  \implies  a_{n} = - 10   + ( - 5n + 5) \\  \\ \tt:  \implies  a_{n} = - 10 - 5n + 5 \\  \\  \green{\tt:  \implies  a_{n} =  - 5n - 5} \\  \\   \green{\tt \therefore nth \: term \: is \:  - 5n - 5}

Similar questions