Math, asked by moreshwer, 10 months ago

find the number of a side of a polygon if the sum of the interior angle is 1800​

Answers

Answered by Sauron
29

Answer:

The polygon has 12 sides.

Step-by-step explanation:

Given :

Sum of interior angles = 1800°

To find :

The number of sides of the polygon

Solution :

Let the number of sides be y

\textsf{Sum of interior angles = \purple{180(n-2)}}

\sf{\implies} \:1800 = 180(y - 2) \\  \\ \sf{\implies} \:1800 = 180y - 360 \\  \\ \sf{\implies} \:180y = 1800 + 360 \\  \\ \sf{\implies} \:180y = 2160 \\  \\ \sf{\implies} \:y =  \dfrac{2160}{180}  \\  \\ \sf{\implies} \:y = 12

Number of sides = 12

\therefore The polygon has 12 sides.

Answered by RvChaudharY50
199

{\large\bf{\mid{\overline{\underline{Given:-}}}\mid}}

  • Sum of all interior angles of a polygon = 1800

\Large\underline\mathfrak{Question}

  • \textbf{Find the number of sides of Polygon} ?

\Large\bold\star\underline{\underline\textbf{Formula\:used}}

 \textbf{Sum of all interior angles of a polygon with n sides} \\  \\ \red\leadsto \:     \red{\huge\boxed{\bf(n - 2) \times 180}} \:

___________________________________

\bold{\boxed{\large{\boxed{\orange{\small{\boxed{\large{\red{\bold{\:Answer}}}}}}}}}} \:

\green{\texttt{Putting value in above Formula we get}}

\red\longrightarrow \sf (n - 2) \times 180 = 1800 \\  \\ \red\longrightarrow \sf \: (n - 2) =  \frac{1800}{180} \\  \\ \red\longrightarrow \sf \: n - 2 = 10 \\  \\ \red\longrightarrow \bf \: \large\red{\boxed{\tt\blue{n}\purple{=} \green {12} \orange,\pink{sides}}}</p><p>

______________________________________

Hence, Number of sides of Polygon will be 12 ...

________________________________

\large\bf\  \red\bigstar\underline\texttt{Extra\:Brainly\:Knowledge:-}\red\bigstar \:

Each interior angle of Polygon = (n-2)*180/n

→ Each exterior angle of Polygon = 360°/n .

__________________________________

#BAL

#answerwithquality

Similar questions