Math, asked by saniya0628, 1 month ago

find the number of bricks, each measuring 25 cm × 12.5 cm ×7.5 cm , required to construct a wall 24 m long , 20 m high and 0.5 m thick . while the cement and sand mixture occupies 1/20 th of the volume of the wall.​

Answers

Answered by Aakansika
14

Answer:

Brick:-

l = 25 cm

b = 12.5 cm

h = 7.5 cm

Wall :-

l = 6m = 600 cm

b = 50 cm

h = 5m = 500 cm

Volume of the wall = l x b x h

= 600 x 50 x 500

= 15000000 cubic cm

Volume of mixture = 1/20 x 15000000 = 750000 cubic cm

Volume left = 15000000 - 750000 = 14250000 cubic cm

Required brick = 14250000/25 x 12.5 x 7.5 = 6080 bricks..

Step-by-step explanation:

Hope it helps you...✌

Answered by Anonymous
27

Given:

  • Dimensions of Bricks

★ Length = 25 cm

★ Breadth = 12.5cm

★ Hieght = 7.5cm

  • Dimensions of wall

★ Length = 24m = 2400cm

★ Breadth = 0.5m = 50cm

★ Hieght = 20m = 2000cm

[Note : the cement occupies 1/20th of the volume of the wall]

To Find :

  • The number of bricks Required to construct the wall

Solution:

● Now let's firstly find the volume of the wall,

We know,

 \:  \:   \:   \:  \:  \:  \:  \: \dag \: \bigg( \bf \: volume = l \times b \times h \bigg)

Here,

  • L = 2400cm
  • H = 2000cm
  • B = 50cm

Putting the values we get,

{ : \implies}  \rm \: volume _{(wall)} = 2400cm \times 2000cm \times 50cm \\  \\  \\ { : \implies}  \rm \: volume _{(wall)} = 2400cm \times 100000 {cm}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies}  \rm \: volume _{(wall)} = { \purple{ \underline{ \boxed{ \pmb{ \frak{240000000 {cm}^{3} }}}} \bigstar}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Henceforth the volume of the wall is 240000000cm³

As,

  • 1 / 20 th part of it is occupied by cement and sand let's find the actual amount of wall which bricks need to occupy

{ : \implies}  \rm \: volume _{(actual \: amount)} =  \frac{19}{20}  \times 240000000 \\  \\  \\ { : \implies}  \rm \: volume _{(actual \: amount)}  = 19 \times 12000000 \:  \:  \:  \:  \:  \\  \\  \\ { : \implies}  \rm \: volume _{(actual\: amount)}  = { \purple{ \underline{ \boxed{ \pmb{ \frak{228000000 {cm}^{3} }}}} \bigstar}}

  • Henceforth, the actual volume is 228000000cm³

Now,

  • Let's find the volume of each brick

We know that,

 \:  \:   \:   \:  \:  \:  \:  \: \dag \: \bigg( \bf \: volume = l \times b \times h \bigg)

Here,

  • Length = 25cm
  • Breath = 12.5cm
  • Hieght = 7.5cm

Putting the values we get,

{ : \implies}  \rm \: volume _{(brick)} =25cm \times 12.5cm \times 7.5 cm \\  \\  \\ { : \implies}  \rm \: volume _{(brick)} ={ \purple{ \underline{ \boxed{ \pmb{ \frak{ 2343.75{cm}^{3} }}}} \bigstar}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now,

  • Let's find the number of bricks Required

{ : \implies}  \rm \: no.of _{(bricks)} = \frac{volume \: of \: wall}{volume \: of \: bricks}  \\  \\  \\ { : \implies}  \rm \: no.of _{(bricks)} = \frac{228000000 {cm}^{3} }{2343.75 {cm}^{3} }  \:  \:  \:  \\  \\  \\ { : \implies}  \rm \: no.of _{(bricks)} ={ \purple{ \underline{ \boxed{ \pmb{ \frak{97280}}}} \bigstar}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hence:

  • 97280 bricks are required to construct the wall

Similar questions