Find the number of integral values of a for which the equation cos 2x + a sin x = 2a - 7 possesses a
solution.
Answers
Answered by
2
Answer:
{ -6, -5 ,-4, ,-3, -2 }
Step-by-step explanation:
cos 2x + a sin x = 2a - 7
[ 1 - 2sin^2(x) ] + a sin x = 2a - 7
2sin^2(x) - a sin x - (2a + 8 ) = 0 ( quadratic eq )
sin x = [ a ± √(a^2 + 8 ( 2a + 8 ) ] / 4
sin x = [ a ± √(a^2 + 64 + 16a) ] / 4
sin x = [ a ± (a + 8 ) ] / 4
sin x = -2 or sin x = (a + 4) /2
since sin ≠ -2 and -1 ≤ sin x ≤ +1
-1 ≤ (a + 4) /2 ≤ +1
-2 ≤ (a + 4) ≤ +2
-6 ≤ a ≤ -2
hence.....
a = { -6, -5 ,-4, ,-3, -2 }
Similar questions