Math, asked by DCJaiysnu3377, 2 months ago

Find the number of integral values of which satisfy-3<2x-1<19

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

\bf :\longmapsto\: - 3 &lt; 2x - 1 &lt; 19

 \red{\bf :\longmapsto\:On \: adding \: 1 \: in \: each \: term}

\rm :\longmapsto\: - 3  + 1&lt; 2x - 1 + 1 &lt; 19 + 1

\rm :\longmapsto\: - 2 &lt; 2x &lt; 20

 \red{\bf :\longmapsto\:On \: dividing \: by \: 2 \: each \: term}

\rm :\longmapsto\: - \dfrac{2}{2}  &lt; \dfrac{2x}{2}  &lt; \dfrac{20}{2}

\rm :\longmapsto\: - 1 &lt; x &lt; 10

 \red{\bf :\longmapsto\:As \: x \in \:  Z}

\rm :\implies\:x \in \{0,1,2,3,4,5,6,7,8,9 \}

\bf\implies \:x \: can \: take \: 10 \: integral \: values

Additional Information :-

\boxed{ \green{ \tt \:x &gt; y \implies \:  - x &lt;  - y }}

\boxed{ \green{ \tt \:x  &lt;  y \implies \:  - x  &gt;   - y }}

\boxed{ \green{ \tt \:x   \geqslant   y \implies \:  - x   \leqslant    - y }}

\boxed{ \green{ \tt \:x   \leqslant   y \implies \:  - x   \geqslant    - y }}

\boxed{ \green{ \tt \: - x &gt; y \implies \:  x &lt;  - y }}

\boxed{ \green{ \tt \: - x  &lt;  y \implies \:  x  &gt;   - y }}

\boxed{ \green{ \tt \:\dfrac{x}{y} &gt; 0 \implies \: x &gt; 0, \: y &gt; 0 \: or \: x &lt; 0, \: y &lt; 0  }}

\boxed{ \green{ \tt \:\dfrac{x}{y}  &lt;  0 \implies \: x  &lt;  0, \: y &gt; 0 \: or \: x  &gt;  0, \: y &lt; 0  }}

Similar questions