Math, asked by Baneetk, 17 days ago

Find the number of integral values of 'x' for which 'y' is not negative, given that y = -2x2 + 3x + 7.
{x' is a real number)
ОО
O2
04
O 5

Answers

Answered by varadad25
3

Answer:

The number of integral values of x for which y is not negative is 4.

Option 3) 4

Step-by-step-explanation:

We have given that,

For the equation - 2x² + 3x + 7 = y, y is not negative.

And x is a real number.

We have to find the number of integral value of x.

y is not negative.

\displaystyle{\therefore\:\sf\:y\:\geq\:0}

\displaystyle{\implies\sf\:-\:2x^2\:+\:3x\:+\:7\:\geq\:0}

Comparing with \displaystyle{\sf\:ax^2\:+\:bx\:+\:c\:\geq\:0}, we get,

  • a = - 2
  • b = 3
  • c = 7

Now,

\displaystyle{\sf\:b^2\:-\:4ac\:=\:3^2\:-\:4\:(\:-\:2\:\times\:7\:)}

\displaystyle{\implies\sf\:b^2\:-\:4ac\:=\:9\:-\:4\:(\:-\:14\:)}

\displaystyle{\implies\sf\:b^2\:-\:4ac\:=\:9\:+\:56}

\displaystyle{\implies\:\boxed{\blue{\sf\:b^2\:-\:4ac\:=\:65\:}}}

Now, by quadratic formula,

\displaystyle{\boxed{\pink{\sf\:x\:\geq\:\dfrac{\:-\:b\:\pm\:\sqrt{b^2\:-\:4ac}}{2a}\:}}}

\displaystyle{\implies\sf\:x\:\geq\:\dfrac{-\:3\:\pm\:\sqrt{65}}{2\:\times\:(\:-\:2\:)}}

\displaystyle{\implies\sf\:x\:\geq\:\dfrac{-\:3\:\pm\:\sqrt{65}}{-\:4}}

\displaystyle{\implies\sf\:x\:\geq\:\dfrac{-\:(\:-\:3\:\pm\:\sqrt{65}\:)}{4}}

\displaystyle{\implies\sf\:x\:\geq\:\dfrac{3\:\mp\:\sqrt{65}}{4}}

\displaystyle{\implies\sf\:x\:\geq\:\dfrac{3\:-\:\sqrt{65}}{4}\:\quad\:OR\:\quad\:x\:\geq\:\dfrac{3\:+\:\sqrt{65}}{4}}

\displaystyle{\implies\sf\:\dfrac{3\:-\:\sqrt{65}}{4}\:\leq\:x\:\geq\:\dfrac{3\:+\:\sqrt{65}}{4}}

\displaystyle{\implies\sf\:\dfrac{3\:-\:8.062}{4}\:\leq\:x\:\geq\:\dfrac{3\:+\:8.062}{4}}

\displaystyle{\implies\sf\:\dfrac{-\:5.062}{4}\:\leq\:x\:\geq\:\dfrac{11.062}{4}}

\displaystyle{\implies\sf\:-\:1.2655\:\leq\:x\:\geq\:2.7655}

\displaystyle{\implies\sf\:x\:\in\:[\:-\:1.2655\:,\:2.7655\:]}

Taking the integral part, we get,

\displaystyle{\implies\sf\:x\:\in\:[\:-\:1\:,\:2\:]}

\displaystyle{\implies\:\underline{\boxed{\red{\sf\:x\:=\:\{\:-\:1\:,\:0\:,\:1\:,\:2\:\}\:}}}}

∴ The number of integral values of x for which y is not negative is 4.

Similar questions