Math, asked by nasirabdul6566, 1 year ago

Find the number of lead balls, each 1 cm in diameter that can be a sphere of diameter 12 cm.

Answers

Answered by saurabhsemalti
1
before and after volume will remain same
let no. of balls be n
n(4/3π(1*1*1/8))=4/3*π*6*6*6
n/8=6*6*6
n=6*6*6*8 balls
Answered by wifilethbridge
0

Answer:

1728

Step-by-step explanation:

Diameter of lead ball = 1 cm

Radius = \frac{Diameter}{2}=\frac{1}{2}=0.5 cm

So, volume of lead ball = \frac{4}{3} \pi r^3

                                      = \frac{4}{3} \pi (0.5)^3

                                      = 0.523598775598

Diameter of sphere = 12 cm

Radius = \frac{Diameter}{2}=\frac{12}{2}=6 cm

So, volume of Sphere = \frac{4}{3} \pi r^3

                                      = \frac{4}{3} \pi (6)^3

                                      = 904.778684234

Thus the number of balls can be made :

=\frac{\text{Volume of sphere}}{\text{Volume of lead ball}}

=\frac{904.778684234}{0.523598775598}

=1728

Hence 1728 lead balls can be made .

Similar questions