find the number of multiples of 6 between 200 and 400
Answers
Answer:
The numbers lying between 200 and 400, which are divisible by 7, are
203, 210, 217, … 399
∴First term, a = 203
Last term, l = 399
Common difference, d = 7
Let the number of terms of the A.P. be n.
∴ an = 399 = a + (n –1) d
⇒ 399 = 203 + (n –1) 7
⇒ 7 (n –1) = 196
⇒ n –1 = 28
⇒ n = 29
therefore space S subscript 29 space equals space 29 over 2 space open parentheses 203 space plus space 399 close parentheses
space space space space space space space space space space space space space equals space 29 over 2 space open parentheses 602 close parentheses
space space space space space space space space space space space space space equals space open parentheses 29 close parentheses open parentheses 301 close parentheses
space space space space space space space space space space space space space equals space 8729
Thus, the required sum is 8729.
I hope it's helpful
plz flw .me
Answer:
mark brainlest please
Step-by-step explanation:
done