Find the number of ordered pairs of positive integers (x y) that satisfy x^(2)+y^(2)-xy=37
Answers
Given : x² + y² - xy = 37
To find : ordered pairs of positive integers (x y) that satisfy
Solution:
x² + y² - xy = 37
=> (x - y)² + xy = 37
=> (x - y)² = 37 - xy
=> xy ≤ 37
(x - y)² = 0 => xy = 37 ( 1, 37 )
& x = y hence no possible Solution
(x - y)² = 1 => xy = 36
=> x - y = 1 & possible x , y ( 1 , 36) , ( 2, 18) , ( 3, 12) , ( 4, 9) , ( 6 , 6)
none satisfy x - y = 1
(x - y)² = 4 => xy = 33 ( 1 , 33) or ( 3 , 11)
x - y = 2 hence no possible Solution
(x - y)² = 9 => xy = 28 ( 1 , 28) or ( 2 , 14) , ( 4, 7)
x - y = 3 hence ( 4 , 7 ) Satisfied
(x - y)² = 25 => xy = 12 ( 1 , 12) or ( 2 , 6) , ( 3, 4)
x - y = 5 hence no possible Solution
(x - y)² = 36 => xy = 1 ( 1 , 1)
x - y = 6 hence no possible Solution
So only possible Solution
is ( 4 , 7 ) or ( 7 , 4)
Learn More:
X+y+xy=44 how many ordered pairs (x,y) satisfy the given condition ...
https://brainly.in/question/13645994
How many ordered pairs of (m,n) integers satisfy m/12=12/m ...
https://brainly.in/question/13213839