Math, asked by bhabani3124, 4 months ago

Find the number of ordered triples (x, y, z) of real numbers that satisfy the system of
equation:
x+y+z = 7; 2? + y2 + 22 = 27; xyz = 5.​


amitnrw: one of the solution 5 , 1 , 1

Answers

Answered by amitnrw
2

Given :   x + y + z  = 7

x² + y² + z² = 27

xyz = 5

To Find : number of ordered triples (x, y, z)

Solution:

x + y + z  = 7  

=> (y + z)  = 7 - x

squaring both sides

y² + z² + 2yz  = 49 + x² - 14x

x² + y² + z² = 27 => y² + z² = 27 - x²

xyz = 5 => yz = 5/x

27 - x² + 2(5/x)  = 49 + x² - 14x

=> 27x - x³ + 10 = 49x + x³ - 14x²

=> 2x³  - 14x²  + 22x  - 10 = 0

=> x³ - 7x² + 11x - 5 = 0

=> (x - 5)(x - 1)² = 0

x = 5 , x  = 1 ,  1

5 + y + z  = 7   => y + z = 2  

5² + y² + z² = 27 => y² + z² = 2  

y² + (2 - y)² = 2

=> y² + 4 + y² - 4y = 2

=> 2y² - 4y + 2 = 0

=> y² - 2y + 1 = 0

=> (y - 1)² = 0

=> y = 1  Hence z = 1

x = 1

1 + y + z  = 7   => y + z = 6  

1² + y² + z² = 27 => y² + z² = 26

y² + (6 - y)² = 26

=> y² + 36 + y² - 12y = 26

=> 2y² -12y + 10 = 0

=> y² - 6y + 5 = 0

=> (y - 1)(y - 5) = 0

=> y = 1  Hence z = 5

  y = 5  hence z = 1

Solution are

x      y    z

5      1    1

1       5   1

1       1     5

the number of ordered triples = 3

( 5 , 1 , 1) , ( 1 , 5 , 1) , ( 1 , 1 , 5)

Learn more:

if x+y+z=0 then the square of the value of (x+y)^2/xy+(y+z)^2/yz+(z+x)

brainly.in/question/12858114

Find x,y,z using cramers rule, if x-y+z=4, 2x+y-3z=0 and x+y+z=2

brainly.in/question/9052437

brainly.in/question/16359658

Similar questions