Math, asked by shivanshm404, 4 months ago

find the number of polygon if the sum of interior angle is ​

Attachments:

Answers

Answered by EliteZeal
11

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

 \:\:

  • a) Sum of interior angles is 10 right angles

  • b) Sum of interior angles is 720°

  • c) Sum of interior angles is 1620°

  • d) Sum of interior angles is 540°

 \:\:

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

 \:\:

  • The number of sides of polygon in each case

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

 \:\:

We know that the the sum of interior angles of a polygon can be calculated by -

 \:\:

➠ S = (n - 2) × 180° ⚊⚊⚊⚊ ⓵

 \:\:

Where ,

 \:\:

  • S = Sum of all interior angles of the polygon

  • n = Number of sides of the polygon

 \:\:

For (a)

 \:\:

➠ a) 10 right angles

 \:\:

We know that 1 right angle is of 90°

 \:\:

Thus ,

 \:\:

10 right angles = (90 × 10)°

 \:\:

10 right angles = 900°

 \:\:

  • S = 900°

  • n = n

 \:\:

Putting the above values in ⓵

 \:\:

: ➜ S = (n - 2) × 180°

 \:\:

: ➜ 900 = (n - 2) × 180°

 \:\:

: ➜  \sf \dfrac { 900 } { 180 } = n - 2

 \:\:

: ➜ n - 2 = 5

 \:\:

: ➜ n = 5 + 2

 \:\:

: : ➨ n = 7

 \:\:

  • Hence the number of sides in a) is 7

 \:\:

For (b)

 \:\:

➠ b) 720°

 \:\:

  • S = 720°

  • n = n

 \:\:

Putting the above values in ⓵

 \:\:

: ➜ S = (n - 2) × 180°

 \:\:

: ➜ 720 = (n - 2) × 180

 \:\:

: ➜  \sf \dfrac { 720} { 180 } = n - 2

 \:\:

: ➜ n - 2 = 4

 \:\:

: ➜ n = 4 + 2

 \:\:

: : ➨ n = 6

 \:\:

  • Hence the number of sides in b) is 6

 \:\:

For (c)

 \:\:

➠ c) 1620°

 \:\:

  • S = 1620°

  • n = n

 \:\:

Putting the above values in ⓵

 \:\:

: ➜ S = (n - 2) × 180°

 \:\:

: ➜ 1620 = (n - 2) × 180

 \:\:

: ➜  \sf \dfrac { 1620} { 180 } = n - 2

 \:\:

: ➜ n - 2 = 9

 \:\:

: ➜ n = 9 + 2

 \:\:

: : ➨ n = 11

 \:\:

  • Hence the number of sides in c) is 11

 \:\:

For (d)

 \:\:

➠ d) 540°

 \:\:

  • S = 540°

  • n = n

 \:\:

Putting the above values in ⓵

 \:\:

: ➜ S = (n - 2) × 180°

 \:\:

: ➜ 540 = (n - 2) × 180

 \:\:

: ➜  \sf \dfrac { 540} { 180 } = n - 2

 \:\:

: ➜ n - 2 = 3

 \:\:

: ➜ n = 3 + 2

 \:\:

: : ➨ n = 5

 \:\:

  • Hence the number of sides in d) is 5

Answered by Ranveerx107
1

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

 \:\:

a) Sum of interior angles is 10 right angles

b) Sum of interior angles is 720°

c) Sum of interior angles is 1620°

d) Sum of interior angles is 540°

 \:\:

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

 \:\:

  • The number of sides of polygon in each case

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

 \:\:

We know that the the sum of interior angles of a polygon can be calculated by -

 \:\:

➠ S = (n - 2) × 180° ⚊⚊⚊⚊ ⓵

 \:\:

Where ,

 \:\:

S = Sum of all interior angles of the polygon

n = Number of sides of the polygon

 \:\:

For (a)

 \:\:

➠ a) 10 right angles

 \:\:

We know that 1 right angle is of 90°

 \:\:

Thus ,

 \:\:

10 right angles = (90 × 10)°

 \:\:

10 right angles = 900°

 \:\:

S = 900°

n = n

 \:\:

⟮ Putting the above values in ⓵ ⟯

 \:\:

: ➜ S = (n - 2) × 180°

 \:\:

: ➜ 900 = (n - 2) × 180°

 \:\:

: ➜  \sf \dfrac { 900 } { 180 } = n - 2

 \:\:

: ➜ n - 2 = 5

 \:\:

: ➜ n = 5 + 2

 \:\:

: : ➨ n = 7

 \:\:

Hence the number of sides in a) is 7

 \:\:

For (b)

 \:\:

➠ b) 720°

 \:\:

S = 720°

n = n

 \:\:

⟮ Putting the above values in ⓵ ⟯

 \:\:

: ➜ S = (n - 2) × 180°

 \:\:

: ➜ 720 = (n - 2) × 180

 \:\:

: ➜  \sf \dfrac { 720} { 180 } = n - 2

 \:\:

: ➜ n - 2 = 4

 \:\:

: ➜ n = 4 + 2

 \:\:

: : ➨ n = 6

 \:\:

Hence the number of sides in b) is 6

 \:\:

For (c)

 \:\:

➠ c) 1620°

 \:\:

S = 1620°

n = n

 \:\:

⟮ Putting the above values in ⓵ ⟯

 \:\:

: ➜ S = (n - 2) × 180°

 \:\:

: ➜ 1620 = (n - 2) × 180

 \:\:

: ➜  \sf \dfrac { 1620} { 180 } = n - 2

 \:\:

: ➜ n - 2 = 9

 \:\:

: ➜ n = 9 + 2

 \:\:

: : ➨ n = 11

 \:\:

Hence the number of sides in c) is 11

 \:\:

For (d)

 \:\:

➠ d) 540°

 \:\:

S = 540°

n = n

 \:\:

⟮ Putting the above values in ⓵ ⟯

 \:\:

: ➜ S = (n - 2) × 180°

 \:\:

: ➜ 540 = (n - 2) × 180

 \:\:

: ➜  \sf \dfrac { 540} { 180 } = n - 2

 \:\:

: ➜ n - 2 = 3

 \:\:

: ➜ n = 3 + 2

 \:\:

: : ➨ n = 5

 \:\:

Hence the number of sides in d) is 5

Similar questions