Math, asked by chaitanya4904, 3 months ago

Find the number of positive integers'n' , such that√n+√n+1<11.

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \sqrt{n}  +   \sqrt{n + 1}  &lt; 11

 \implies \sqrt{n}  &lt; 11 -  \sqrt{n + 1}

 \implies \: n &lt; 122+ n - 22 \sqrt{n + 1}

 \implies22 \sqrt{n + 1}  &lt; 122 \\

 \implies \sqrt{n + 1}  &lt;  \frac{122}{22} \\

 \implies \sqrt{n + 1}  &lt;  \frac{61}{11}  \\

 \implies(n + 1) &lt;  \frac{3721}{121}  \\

 \implies \: n  &lt;  \frac{3721 - 121}{121}  \\

 \implies \: n &lt;  \frac{3600}{121}  \\

 \implies \: n &lt; 29.75

Hence, 29 positive integers are satisfying the given condition

Similar questions