find the number of real roots
Answers
Answer:
Real solutions of x is
Real solutions of x is
x = (1 - √13)/2
x = (1 + √13)/2
x = (-1 + √141)/14
x = (-1 - √141)/14
Step-by-step explanation:
We have,
3x² - 4 |x² - 1| + x - 1 = 0
Now,
We know that,
| x² - 1 | = ± (x² - 1)
= (x² - 1) or (-x² + 1)
Now, solving the equation,
3x² - 4 |x² - 1| + x - 1 = 0
3x² - 4(x² - 1) + x - 1 = 0
OR
3x² - 4(-x² + 1) + x - 1 = 0
Then,
3x² - 4x² + 4 + x - 1 = 0
OR
3x² + 4x² - 4 + x - 1 = 0
-x² + x - 3 = 0
OR
7x² + x - 5 = 0
Using the Quadratic formula,
x = (-b ± √(b² - 4ac))/2a
Then,
-x² + x - 3 = 0
ax² + bx + c = 0
a = (-1), b = 1, c = (-3)
OR
7x² + x - 5 = 0
ax² + bx + c = 0
a = 7, b = 1, c = (-5)
So,
x = [-1 ± √1² + 4(-1)(-3)]/2(-1)
x = (-1)[-1 ± √1 + 12]/2
x = (-1)[-1 ± √13)/2
OR
x = [-1 ± √1² - 4(7)(-5)]/2(7)
x = [-1 ± √1 + 140]/14
x = [-1 ± √141]/14
Hence,
Real solutions of x is
x = (-1)[-1 + √13]/2
x = (1 - √13)/2
Also,
x = (-1)[-1 - √13]/2
x = (1 + √13)/2
And
x = (-1 + √141)/14
x = (-1 - √141)/14
Hope it helped you and believing you understood it...All the best