Math, asked by Anonymous, 4 days ago

Find the number of solid spheres, each of diameter 6 cm, that could be moulded to form a solid metallic cylinder of height 45 cm and diameter 4 cm.​

Answers

Answered by shaswat8080
8

Given that

Diameter of solid sphere is 6cm

Diameter of cylinder is 4cm

Height of cylinder is 45cm

To find

Number of solid sphere

Solution

Let

d1 is diameter of solid sphere

then

r1 is radius of sphere it will be

As radius is the half of diameter then

r1 =  \frac{6}{2}  = 3cm

d2 is diameter of cylinder

then

r2 =  \frac{4}{2}  = 2cm

where r2 is radius of cylinder

As know that

volume \: of \: solid \: sphere =  \frac{4}{3}  \times \pi \times  {r1}^{2}

let v1 is volume of solid sphere

v1 =  \frac{4}{3}  \times \pi \times 3 \times 3 \\  = 36\pi

let v2 is volume of cylinder

As known that

volume \: of \: cylinder = \pi \times  {r2}^{2}  \times h

v2 = \pi(2 {)}^{2}  \times 45

where h is height of cylinder

then to calculate numbers of sphere we need to divide v2 by v1

number \: of \: spheres =  \frac{180\pi}{36\pi}  \\  = 5nos

Hence number of sphere required to form cylinder is 5nos.

Answered by Anonymous
40

 \star \; {\underline{\boxed{\pmb{\red{\frak{ \; Given \; :- }}}}}}

  • Diameter of Sphere = 6 cm
  • Height of Cylinder = 45 cm
  • Diameter of Cylinder = 4 cm

 \\ \\

 \star \; {\underline{\boxed{\pmb{\green{\frak{ \; To \; Find \; :- }}}}}}

  • No. of Spheres required = ?

 \\ \\

 \star \; {\underline{\boxed{\pmb{\pink{\frak{ \; SolutioN \; :- }}}}}}

 \maltese Concept :

 \longrightarrow As we know that if any solid is melted there is no change in its Volume .So, we can use the volume to calculate the No. of Spheres required .Let's Solve :

 \\ \qquad{\rule{150pt}{2pt}}

 \maltese Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ Volume{\small_{(Cylinder)}} = \pi {r}^{2} h }}}}}

  •  {\underline{\boxed{\pmb{\sf{ Volume{\small_{(Sphere)}} = \dfrac{4}{3} \pi {r}^{3} }}}}}

 \\ \qquad{\rule{150pt}{2pt}}

 \maltese Calculating the No. of Spheres Required :

 \begin{gathered} \longmapsto \; \; \sf { No. \; of \; Spheres = \dfrac{ Vol. \; of \; Cylinder }{ Vol. \; of \; Sphere } } \\ \end{gathered}

 \begin{gathered} \longmapsto \; \; \sf { No. \; of \; Spheres = \dfrac{ \pi {r}^{2} h }{ \dfrac{4}{3} \pi {r}^{3}} } \\ \end{gathered}

 \begin{gathered} \longmapsto \; \; \sf { No. \; of \; Spheres = \dfrac{ \pi \times { \bigg( \dfrac{Diameter}{2}  \bigg) }^{2} \times 45 }{ \dfrac{4}{3} \times \pi \times { \bigg( \dfrac{Diameter}{2}  \bigg) }^{3}} } \\ \end{gathered}

 \begin{gathered} \longmapsto \; \; \sf { No. \; of \; Spheres = \dfrac{ \pi \times { \bigg( \dfrac{4}{2}  \bigg) }^{2} \times 45 }{ \dfrac{4}{3} \times \pi \times { \bigg( \dfrac{6}{2}  \bigg) }^{3}} } \\ \end{gathered}

 \begin{gathered} \longmapsto \; \; \sf { No. \; of \; Spheres = \dfrac{ \pi \times { \bigg( \cancel\dfrac{4}{2}  \bigg) }^{2} \times 45 }{ \dfrac{4}{3} \times \pi \times { \bigg( \cancel\dfrac{6}{2}  \bigg) }^{3}} } \\ \end{gathered}

 \begin{gathered} \longmapsto \; \; \sf { No. \; of \; Spheres = \dfrac{ \pi \times { 2 }^{2} \times 45 }{ \dfrac{4}{3} \times \pi \times { 3 }^{3}} } \\ \end{gathered}

 \begin{gathered} \longmapsto \; \; \sf { No. \; of \; Spheres = \dfrac{ \pi \times 2 \times 2 \times 45 }{ \dfrac{4}{\cancel3} \times \pi \times \cancel3 \times 3 \times 3 } } \\ \end{gathered}

 \begin{gathered} \longmapsto \; \; \sf { No. \; of \; Spheres = \dfrac{ \pi \times 2 \times 2 \times 45 }{ 4 \times \pi \times 3 \times 3 } } \\ \end{gathered}

 \begin{gathered} \longmapsto \; \; \sf { No. \; of \; Spheres = \dfrac{ \cancel{\pi} \times 2 \times 2 \times 45 }{ 4 \times \cancel{\pi} \times 3 \times 3 } } \\ \end{gathered}

 \begin{gathered} \longmapsto \; \; \sf { No. \; of \; Spheres = \dfrac{ \cancel2 \times 2 \times 45 }{ \cancel4 \times 3 \times 3 } } \\ \end{gathered}

 \begin{gathered} \longmapsto \; \; \sf { No. \; of \; Spheres = \dfrac{ 2 \times 45 }{ 2 \times 3 \times 3 } } \\ \end{gathered}

 \begin{gathered} \longmapsto \; \; \sf { No. \; of \; Spheres = \dfrac{ \cancel2 \times 45 }{ \cancel2 \times 3 \times 3 } } \\ \end{gathered}

 \begin{gathered} \longmapsto \; \; \sf { No. \; of \; Spheres = \dfrac{ \cancel{45} }{ \cancel3 \times 3 } } \\ \end{gathered}

 \begin{gathered} \longmapsto \; \; \sf { No. \; of \; Spheres = \dfrac{ 15 }{ 3 } } \\ \end{gathered}

 \begin{gathered} \longmapsto \; \; \sf { No. \; of \; Spheres = \cancel\dfrac{ 15 }{ 3 } } \\ \end{gathered}

 \begin{gathered} \qquad \; \; {\therefore \; {\underline{\boxed{\pmb{\color{darkblue}{\sf{ No. \; of \; Spheres = 5 }}}}}}} \end{gathered}

 \\ \qquad{\rule{150pt}{2pt}}

 \maltese Therefore :

❛❛ No. of Spheres required to make the Cylinder is 5 . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Similar questions