Math, asked by shinyrupa183, 6 months ago


Find the number of solutions of the equation

x_1+x_2+\ldots+x_p=m,x1​+x2​+…+xp​=m,

such that x_k\ge lxk​≥l for all kk. (mm, pp, l\ge 0l≥0 are given.)

Please avoid using '!' (the factorial sign). For {n\choose k}(kn​) write 'binomial'.

Answers

Answered by Nylucy
1

Answer:

⇒ In given figure ABCD is a square having all sides are equal and opposite sides parallel to each other. AC and BD are diagonals.

⇒ In △ABC and △BAD,

⇒ AB = AB [Common line]

⇒ BC = AD [Sides of square are equal.]

⇒ ∠ABC = ∠BAD [All four angles of square is 90

]

⇒ △ABC ≅ △BAD [By SAS property]

⇒ In a △ OAD and △OCB,

⇒ AD = CB [sides of a square]

⇒ ∠OAD = ∠OCB [Alternate angle]

⇒ ∠ODA = ∠OBC [Alternate angle]

⇒ △OAD ≅ △OCB [By ASA Property]

⇒ So, OA = OC ----- ( 1 )

⇒ Similarly, OB = OD ------ ( 2 )

From ( 1 ) and ( 2 ) we get that AC and BD bisect each other.

⇒ Now, in △OBA and △ODA,

⇒ OB = OD [From ( 2 )]

⇒ BA = DA

⇒ OA = OA [Common line]

⇒ ∠AOB + ∠AOD ----- ( 3 ) [By CPCT]

⇒ ∠AOB + ∠AOD = 180

[Linear pair]

⇒ 2∠AOB = 180

∴ ∠AOB = ∠AOD = 90

∴ We have proved that diagonals of square are equal and perpendicular to each other.

sry I am not spaming.............

Step-by-step explanation:

⇒ In given figure ABCD is a square having all sides are equal and opposite sides parallel to each other. AC and BD are diagonals.

⇒ In △ABC and △BAD,

⇒ AB = AB [Common line]

⇒ BC = AD [Sides of square are equal.]

⇒ ∠ABC = ∠BAD [All four angles of square is 90

]

⇒ △ABC ≅ △BAD [By SAS property]

⇒ In a △ OAD and △OCB,

⇒ AD = CB [sides of a square]

⇒ ∠OAD = ∠OCB [Alternate angle]

⇒ ∠ODA = ∠OBC [Alternate angle]

⇒ △OAD ≅ △OCB [By ASA Property]

⇒ So, OA = OC ----- ( 1 )

⇒ Similarly, OB = OD ------ ( 2 )

From ( 1 ) and ( 2 ) we get that AC and BD bisect each other.

⇒ Now, in △OBA and △ODA,

⇒ OB = OD [From ( 2 )]

⇒ BA = DA

⇒ OA = OA [Common line]

⇒ ∠AOB + ∠AOD ----- ( 3 ) [By CPCT]

⇒ ∠AOB + ∠AOD = 180

[Linear pair]

⇒ 2∠AOB = 180

∴ ∠AOB = ∠AOD = 90

∴ We have proved that diagonals of square are equal and perpendicular to each other.

Similar questions