Math, asked by as6000325, 18 days ago

Find the number of square tiles of size 10 cm required for decorating a wall 6m x4m.Alsofind the total cost of the tiles required for this purpose if one tile cost Rs2.50​

Answers

Answered by madhurimag00
27

Answer:

The number of tiles required for decorating the wall are 2400

The total cost of the tiles required is Rs.6000

Step-by-step explanation:

The dimension of the wall is given 6m by 4m, which means that the length of the wall is 6m (600cm) and breadth is 4m(400 cm)

The area of the wall=length x breadth=600 x 400=240000 cm^{2}

The dimension of the tile is 10cm by 10cm

The area of one tile=(10x 10)cm^{2}=100cm^{2}

Number of tiles required to decorate the wall=\frac{240000}{100} =2400

The cost of one tile is Rs.2.50

The cost of all the tiles=2.50 x2400= Rs. 6000

Answered by mathdude500
17

\large\underline{\sf{Solution-}}

Given that,

  • Length of wall = 6m = 6 × 100 = 600 cm

  • Breadth of wall = 4m = 4 × 100 = 400 cm

So,

\rm \: Area_{(wall)} = Length \times Breadth \\

\rm \: Area_{(wall)} = 600 \times 400 \\

\rm\implies \:\boxed{ \rm{ \:Area_{(wall)} = 240000 \:  {cm}^{2} \: }} \\

Now,

Side of square tile = 10 cm

So,

\rm \: Area_{(tile)} =  {(side)}^{2}  \\

\rm \: Area_{(tile)} =  {10}^{2}  \\

\rm\implies \:\boxed{ \rm{ \:Area_{(tile)} = 100 \:  {cm}^{2} \: }} \\

Let assume that number of square tiles of size 10 cm required for decorating a wall 6m x 4m be n.

So,

\rm \: n \times Area_{(tile)} = Area_{(wall)} \\

\rm \: n \times 100 = 240000 \\

\rm\implies \:\boxed{ \rm{ \:n \:  =  \: 2400 \: }} \\

So, 2400 square tiles of size 10 cm required for decorating a wall 6m x 4m.

Further given that,

\rm \: Cost \: of \: 1 \: tile \:  =  \: Rs \: 2.50 \\

So,

\rm \: Cost \: of \: 2400\: tiles \:  = 2400 \times 2.50 =  \: Rs \: 6000 \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Similar questions