Math, asked by innocentgirl82, 9 months ago

Find the number of terms between 200 and
700, which are divisible by 15. Find the sum
of these terms.
(Hint : First term = 210
last term = 690, d = 15)​

Answers

Answered by Anonymous
587

━━━━━━━━━━━━━━━━━━━━━━━━━

Your Answers are,

\text{\large\underline{\pink{Number of ton:-:-}}}

  • ⠀⠀\bold{First\: term\: (a)\: = 210}

  • ⠀⠀\bold{Last\: term \:(l)\:= 690}

  • ⠀⠀\bold{Common\: Difference\: (d) = 15.}

\text{\large\underline{\green{To find}}}

  • ⠀⠀\bold{Number \:of terms \:(n)}

  • ⠀⠀ \bold{Summer\: of \:the\: terms (Sn)}

Formula Used:-

⠀⠀⠀⠀\begin{gathered}\\ \red{\longrightarrow \boxed {\green{ \bf l = a + (n - 1)d}}}\end{gathered}

⠀⠀⠀⠀\begin{gathered}\\ \red{\longrightarrow \boxed {\green{ \bf Sn = \frac{n}{2} + \bigg(a + l \bigg)}}}\end{gathered}

Where,

  • ⠀⠀⠀\bold{l \:=\: Last \:term}

  • ⠀⠀⠀\bold{a\: = \:First\: term}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ⠀⠀⠀\bold{n\: =\: Number \:of\: terms}

  • ⠀⠀⠀\bold{Sn\: = Sum \:of \:n\: terms}

Now,

By putting the values in first formula we get,

⠀⠀⠀⠀\begin{gathered}\\ \tt\mapsto 690 = 210 + (n - 1)15\end{gathered}

⠀⠀⠀⠀\begin{gathered}\\ \tt\mapsto 690 = 210 + 15n - 15\end{gathered}

⠀⠀⠀⠀\begin{gathered}\\ \tt\mapsto 15n = 690 - ( 210 - 15)\end{gathered}

⠀⠀⠀⠀\begin{gathered}\\ \tt\mapsto 15n = 690 - 195\end{gathered}

⠀⠀⠀⠀\begin{gathered}\\ \tt\mapsto15n = 495\end{gathered}

⠀⠀⠀⠀\begin{gathered}\\ \tt\mapsto n = \cancel\frac{495}{15}\end{gathered}

⠀⠀⠀⠀\begin{gathered}\\ \large\red{\mapsto \boxed {\blue{ \bf n = 33.}}}\end{gathered}

⠀⠀⠀⠀\boxed{\blue{\boxed{\textbf{$\therefore$ Number of terms is n = 33}}}}

Again,

By putting values in second formula we get,

⠀⠀⠀⠀\begin{gathered}\\ \tt\mapsto S_{33}= \frac{33}{2} \bigg(210 + 690 \bigg)\end{gathered}

⠀⠀⠀⠀\begin{gathered}\\ \tt\mapsto S_{33}= \frac{33}{ \cancel2} \bigg( \cancel{900} \: \: {}^{450} \bigg)\end{gathered}

⠀⠀⠀⠀\begin{gathered}\\ \tt\mapsto S_{33}= 33 \times 450\end{gathered}

⠀⠀⠀⠀\begin{gathered}\\ \large\red{\mapsto \boxed {\blue{ \bf S_{33}= 14850}}}\end{gathered}

\boxed{\purple{\boxed{\textbf{$\therefore$ Sum Of these terms = 14850}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
4

Therefore Sum Of these terms = 14850

Similar questions