find the number of terms of 3+5+7......=620
Answers
To solve this type of sum, we will use the concept of Arithmetic Progression.
▶️Working formula:-
n/2{2a + (n -1 ) d} =S
So in the given series,
a = 3
d = 5 - 3 = 2
✍Applying the above formula, we get:-
➡️624 = n /2 { 6 + (n-1) 2}
➡️1248= 6n + 2n.n - 2n
➡️1248 - 4n - 2n.n =0
➡️2n.n + 4n -1248 = 0
➡️n.n + 2n - 624 = 0
➡️n.n + 26n - 24n -624 = 0
➡️n(n+26) - 24(n -26)=0
➡️n = -26, 24
But n cannot be negative so n = 24.
There are 24 terms in this AP.
Here We Have
first term (a) = 3
common difference (d) = 5-3 = 2
As it's in A.P. we can use the formula of sum
S = {2a + (n -1 ) d)}
We Have To find the no. of terms i.e. n
→According to the question,
S = {2a + (n -1 ) d)}
⇒ 624 =n/2 { 6 + (n-1) 2}
⇒ 2 * 624 = n (6 + 2n- 2)
⇒ 1248 = 2n² + 4n
⇒ 1248 - 4n - 2n² = 0
⇒ 2n² + 4n -1248 = 0
⇒ n² + 2n - 624 = 0(∵ taking 2 common from each term)
⇒ n² + 26n - 24n - 624 = 0
⇒ n(n+26) - 24(n -26) = 0
⇒ (n-24) (n+26) = 0
⇒ (n-24) = 0 or (n+26) = 0
⇒ n= 24 or n= -26
But n cannot be negative so n = 24.