Math, asked by maachodnewala6803, 1 year ago

Find the number of terms of an ap 18, 15*1/2,13...........,-49*1/2 and find the sum of all its terms

Answers

Answered by sowmiya35
93
hope it helps you out
Attachments:
Answered by mysticd
38

Answer:

Sum \:of \: 28\: terms = -441

Step-by-step explanation:

Given \:A.P: 18,15\frac{1}{2},\\13,.....,-49\frac{1}{2}

 First\:term(a)=18,\\common\: difference (d)=a_{2}-a_{1}\\=15\frac{1}{2}-18\\=-5\frac{1}{2}\\=-2.5\\Last\:term (a_{n})=-49.5

a+(n-1)d=-49.5

\implies 18+(n-1)(-2.5)=-49.5

\implies (n-1)(-2.5)=-49.5-18

\implies (n-1)(-2.5)=-67.5

\implies n-1=\frac{-67.5}{-2.5}

\implies n-1=27

\implies n = 27+1

\implies n = 28

Now,\\Sum \:of \:n\:terms(S_{n})=\frac{n}{2}[2a+(n-1)d]\\=\frac{28}{2}[2\times 18+(28-1)(-2.5)]\\=14[36+(27)(-2.5)]\\=14[36-67.5]\\=14\times (-31.5)\\=-441

Therefore,

Sum \:of \: 28\: terms = -441

•••♪

Similar questions