Math, asked by coolzaim30, 9 months ago

find the number of terms of the ap 64, 60,56......so that their sum is 544​

Answers

Answered by maheshpurohit2004
3

Answer:

n = 16 and n = 17 [∵ we got two values because the last term i.e; 17th term of the given AP is 0]

Step-by-step explanation:

The given AP is 64,60,56,...................

We know that,

First term (a) = 64

Common difference = a_{2} -a_{1} = 60-64 = -4

Given sum of AP  (S_{n}) = 544

By using formula:-

                                 s_{n} = \frac{n}{2} (2a+(n-1)d)

                               544 = \frac{n}{2} (2(64)+(n-1)(-4))

                               544*2 = n (128-4n+4)

                               1088=128n-4n^{2} +4n

                           ⇒  \\4n^{2}-132n+1088=0

                           ⇒  4(n^{2} -33n+272)=0

                           ⇒  n^{2} -33n+272=0

                           ⇒ n^{2} -16n-17n+272=0

                           ⇒ n(n-16)-17(n-16)=0

                           ⇒(n-16) (n-17)=0

                           ⇒ n-16=0     and     n-17=0\\

                           ⇒ n = 16             and     n = 17

so, for the values n=16 and n=17  the sum of  the given A.P.  is 544.

Plzz like this answer and mark this answer as brainliest. For more answers follow me......

Similar questions