Math, asked by jayantrana2482, 1 year ago

Find the number of ways of arranging the letters of the word ramanujan so that the relative position of vowels and consonants are not changed

Answers

Answered by mkrishnan
5

Answer:

240

Step-by-step explanation:

the relative position of vowels and consonants are not changed

so  no of ways  that vowels can be arranged = 4!/3! = 4  

                                                                     [ 3 a are there ]

no of ways  that   consonants can be arranged =5!/2! =5x4x3 =60  

                                                                    [  2 n are there ]

total arrangement 4 x60= 240

Answered by Fαírү
14

\large\bold{\underline{\underline{Answer :-}}}

\sf{\ In \: the \: word \: RAMANUJAN \:  there \: are \: 4 \:  vowels \: (A, A, U, A) \: in \:  that \: 3 \:  A's, \:  1 U \: and \: 5 \:  Constants \: (R, M, N, J, N) in \: that \:  two \: N's \: and \:  rest \:are distinct.}

\sf{\ The \: 4 \: Vowels \: (A, A, A, U) \:  can \: be \: arranged \: themselves \: in \:  \frac{4! }{3!}  = 4 \: ways}

\sf{\ The \: 5  \: Constants \: (R, M, N, J, N) \: can \: be \: arranged \: themselves \: in \: \frac{5! }{2! }  = 60 \: ways}

\sf{\ ∴Therefore \: the \: number \: of \:  required \: arrangements \:  are \: \frac{4! }{3! }  \times  \frac{5! }{2! } = 4 \times 60 = 240}

Similar questions