Math, asked by mshivarajuu, 11 months ago

find the number of zeros at the end of 5 power n -1 factorial​

Answers

Answered by mad210203
2

Given :

The Factorial of given number : 5^{n-1}

To find:

We have to find the factorial of \[{5^{n - 1}}!\]

Solution :

The factorial of a number is defined as a function that multiplies a number by every number below.

We have to first generalize the pattern,

\[{5^{1}}!\] = 1× 2× 3× 4× 5 = 120, it contains one zero

For a larger number, the number of zeroes can find out by the following method.

\[{5^{2}}!\] =\[{25}!\] = \[\frac{{25}}{5} + \frac{{25}}{{{5^2}}}\] = 6 zeroes

\[{5^3}!\] =  \[{125}!\]\\

    \[\begin{array}{l} = \frac{{125}}{5} + \frac{{125}}{{{5^2}}} + \frac{{125}}{{{5^3}}}\\\\ = \frac{{{5^3}}}{5} + \frac{{{5^3}}}{{{5^2}}} + \frac{{{5^3}}}{{{5^3}}}\\\\ = 31\end{array}\]     It contains 31 zeros.

Similarly,

\[{5^{n - 1}}! = \frac{{{5^{n - 1}}}}{5} + \frac{{{5^{n - 1}}}}{{{5^2}}} + \frac{{{5^{n - 1}}}}{{{5^3}}} + \, \cdot  \cdot  \cdot  \cdot  \cdot  \cdot  \cdot  + \frac{{{5^{n - 1}}}}{{{5^{n - 1}}}}\]

∴ The number of zeros at the end of the \[{5^{n - 1}}!\] = \[\frac{{{5^{n - 1}}}}{5} + \frac{{{5^{n - 1}}}}{{{5^2}}} + \frac{{{5^{n - 1}}}}{{{5^3}}} + \, \cdot  \cdot  \cdot  \cdot  \cdot  \cdot  \cdot  + \frac{{{5^{n - 1}}}}{{{5^{n - 1}}}}\]  

Answered by varshini6777
0

Step-by-step explanation:

mark me as brainlist

please

Attachments:
Similar questions