Find the numbers if the sum of its square is 244 and difference of greater to smaller number is 2.
Answers
Answer :-
The greater number is - 10 or 12 and smaller number is - 12 or 10
Explanation :-
Given :-
Differen between greater and smaller number is 2
Sum of its squares = 244
To find :-
Numbers
Solution :-
Let the greater number be x and smaller number be y
Difference between greater number and smaller number = 2
⇒ x - y = 2
We can write value of x in terms of y
⇒ x = 2 + y ---(1)
Square of greater number = (x)² = x²
Square of smaller number = (y)² = y²
Sum of its squares = 244
⇒ x² + y² = 244
Now substitute value x = y + 2 in the above equation
⇒ (2 + y)² + y² = 244
⇒ 2² + y² + 2(2)(y) + y² = 244
⇒ 4 + y² + 4y + y² = 244
⇒ 2y² + 4 + 4y = 244
⇒ 2y² + 4y = 244 - 4
⇒ 2y² + 4y = 240
⇒ 2y² + 4y - 240 = 0
⇒ 2(y² + 2y - 120) = 0
⇒ y² + 2y - 120 = 0/2
⇒ y² + 2y - 120 = 0
Split the middle term
⇒ y² + 12y - 10y - 120 = 0
⇒ y(y + 12) - 10(y + 12) = 0
⇒ (y + 12)(y - 10) = 0
⇒ y + 12 = 0 or y - 10 = 0
⇒ y = - 12 or y = 10
Both y = - 12 or 10
(i) Substititute y = - 12 in (1)
⇒ x = 2 + y
⇒ x = 2 + ( - 12)
⇒ x = 2 - 12
⇒ x = - 10
(ii) Substititute y = 10 in (1)
⇒ x = 2 + y
⇒ x = 2 + 10
⇒ x = 12
So. x = - 10 or 12
So, the greater number is - 10 or 12 and smaller number is - 12 or 10
Verification :-
When x = - 10 and y = - 12
⇒ x² + y² = 244
⇒ (-10)² + (-12)² = 244
⇒ 100 + 144 = 244
⇒ 244 = 244
When x = 12 and y = 10
⇒ x² + y² = 244
⇒ (12)² + (10)² = 244
⇒ 100 + 144 = 244
⇒ 244 = 244