Math, asked by Surjalmehra, 1 year ago

find the numerical value

Attachments:

Answers

Answered by sivaprasath
1

Answer:

\frac{13}{4}

Step-by-step explanation:

Given :

to find the value of :

Sin² 45° + Cos² 150° + tan² 120° + Cos 180°

Solution :

We know that,

sin 45° = \frac{1}{\sqrt{2} }

cos 150° = cos (90° + 60°) = - sin 60° = \frac{-\sqrt{3}}{2}

tan 120° = tan (90° + 30°) = - cot 30° = -\sqrt{3}

cos 180° = cos (90° + 90°) = -sin 90° = -1

∴ Sin² 45° + Cos² 150° + tan² 120° + Cos 180°

(\frac{1}{\sqrt{2}})^2 + (-\frac{\sqrt{3}}{2})^2 + (-\sqrt{3})^2 + (-1)

\frac{1}{2} + \frac{3}{4} + 3 - 1

\frac{2}{4} + \frac{3}{4} + 2

\frac{5}{4} + \frac{8}{4} = \frac{13}{4}

Similar questions