Math, asked by amaanmhd2, 23 days ago

Find the orthocenter of the triangle with (1, 2) (2, 6) & (3, -4) as vertices.

Answers

Answered by MysticSohamS
1

Answer:

hey here is your answer

pls mark it as brainliest

Step-by-step explanation:

to \: find :  \\ coordinates \: of \: orthocenter \: of \: △ABC \\  \\ so \: here \: let \\ O \: be \: the \: orthocentre \: of \: △ABC \\ such \: that \\ O = (x,y) \\  \\ so \: considering \\ A = (x1,y1) =( 1,2) \\  \\ B = (x2,y2) = (2,6) \\  \\ so \: thus \: then \\  \\ slope \: of \: AB  \: (m1)=  \frac{y2 - y1}{x2 - x1}  \\  \\  =  \frac{6 - 2}{2 - 1}  \\  \\  =  \frac{4}{1}  \\  \\  m1= 4 \\  \\ so \: thus \: then    \:  as \: here  \\ \:  \: AB  \: ⊥ \:  CD \: ie \: ⊥ \: OD \\  \\ slope \: of \: AB \times slope \: of \: CD =  - 1 \\  \\ m1 \times m2 =  - 1 \\  \\ 4.m2 =  - 1 \\  \\ m2 =  \frac{ - 1}{4}  \\  \\ so \: thus \: here \\  \\ C = (x1,y1) = (3, - 4) \\  \\ we \: know \: that \\ slope - point \: equation \: of \: straight \: line \\ is \: given \: by \\  \\ y - y1 = m(x - x1) \\  \\ y - ( - 4) =  \frac{ - 1}{4} (x - 3) \\  \\ 4(y + 4) =  - 1(x - 3) \\ \\  4y + 16 =  - x + 3 \\  \\ x + 4y = -  13 \:  \:  \:  \:  \:  \:  \:  \:  \: (1)

similarly \:  \: here \\ A = (x1,y1) = (1,2) \\  \\  C= (x2,y2) = (3, - 4) \\  \\ so \: thus \: then \\  \\ slope \: of \: AC =  \frac{y2 - y1}{x2 - x1}  \\  \\  =  \frac{ - 4 - 2}{3 - 1}  \\  \\  =  \frac{ - 6}{2}  \\  \\slope \: of \:  AC =  - 3 \\  \\ now \: since \: here \\ AC \:  ⊥  \:  BF   \: ie \:  \: OF \\  \\ slope \: of \: AC \times slope \: of \: BF =  - 1 \\  \\  - 3 \times m =  - 1 \\  \\ m =  \frac{1}{3}  \\  \\ thus \: let \: then \\  \\ B = (x1,y1) = (2,6) \\  \\ we \: have \\  \\ y - y1 = m(x - x1) \\  \\ y - 6 =  \frac{1}{3} (x - 2) \\  \\ 3(y - 6) = x - 2 \\  \\ 3y - 18 = x - 2 \\  \\ x - 3y =  - 16 \:  \:  \:  \:  \:  \:  \:  \: (2)

applying \:  \: (1) - (2) \\   we \: have \: then \\  \\ 4y - ( - 3y) =  - 13 - ( - 16) \\  \\ 4y + 3y =  - 13 + 16 \\  \\ 7y = 3 \\  \\ y =  \frac{3}{7}  \\  \\ substitute \: value \: of \: y \: in \: (1) \\ we \: get \\  \\ x =  \frac{ - 103}{17}

thus \: then \\ we \: have \\  \\ O = (x,y) =  ( \frac{ - 103}{7}  \: , \:  \frac{3}{7}  \: )

Attachments:
Similar questions