find the orthocenter of triangle (5,1) ,(1,2),(2,3)
Answers
Answered by
1
Answer:
Let A(5,−1) and B(−2,3) and orthocentre is O(0,0)
∴ Slope of altitude coming from A
=
5−0
−1−0
=
5
−1
Slope of BC =
⎣
⎢
⎢
⎡
5
−1
1
⎦
⎥
⎥
⎤
=5
∴ Slope of BC× Slope of altitude coming from A=−1
Equation of line through BC is,
y=5x+c
If B(−2,3) lies on above the line
i.e,3=−5×+C ⇒C=13
i.e,y=5x+13→ (1)
Similarly, the slope of AC =
3
2
Substituting (5,−1) in the equation
−1=
3
2
×5+C⇒C=−1
3
−10
=
3
−13
i.e,y=
3
2
x−
3
13
⇒3y=2x−13→(2)
eq Subtract Eqn (1) and (2)
0=[5x−
3
2
x]+[13−(
3
−13
)]
=
3
13x
+[
3
39+13
]=
3
13x+52
=0
⟹13x=−52i.e,x=−4
Put the value of x in eqn (1)
y=5(−4)+13=−7
∴ The third vertex is (−4,−7)
Similar questions