Math, asked by karunakarkv2776, 10 days ago

find the orthogonal trajectories of the family curves r=a theta, where a' is the parameter .r=a theta​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given polar curve is

\red{\rm :\longmapsto\:r \:  =  \: a \: \theta  -  -  - (1)}

\rm :\longmapsto\:Differentiating \: both \: sides \: w.r.t. \: \theta , \: we \: get

{\rm :\longmapsto\:\dfrac{d}{d\theta } r \:  = \dfrac{d}{d\theta } \: a \: \theta }

{\rm :\longmapsto\:\dfrac{dr}{d\theta }  \:  = \: a \:  \dfrac{d}{d\theta }\: \theta }

{\rm :\longmapsto\:\dfrac{dr}{d\theta }  \:  = \: a \:}

Substituting the value of 'a' in equation (1), we get

\rm :\longmapsto\:r = \theta \dfrac{dr}{d\theta }

Now, for Orthogonal trajectories, Replace

\red{\rm :\longmapsto\:\dfrac{dr}{d\theta } \:  =  \:  -  \:  {r}^{2}\dfrac{d\theta }{dr }}

So, we get

\rm :\longmapsto\:r = -  {r}^{2}  \theta \dfrac{d\theta }{dr}

\rm :\longmapsto\:1 = -  {r}^{}  \theta \dfrac{d\theta }{dr}

On separate the variables, we get

\rm :\longmapsto\:\dfrac{dr}{r}  =  - \theta  \: d\theta

On integrating both sides, we get

\rm :\longmapsto\:\displaystyle\int \rm \dfrac{dr}{r}  =  - \displaystyle\int \rm \theta  \: d\theta

We know,

\boxed{ \rm{ \displaystyle\int \rm  \frac{1}{x}  \: dx \:  =  \: logx + c}}

and

\boxed{ \rm{ \displaystyle\int \rm  {x}^{n} \: dx \:  =  \:  \frac{ {x}^{n + 1} }{ n+ 1}  + c}}

So, using this, we get

\rm :\longmapsto\: log(r) = -  \dfrac{ {\theta }^{2} }{2}  + c

\rm :\longmapsto\: 2log(r) = -  {\theta }^{2}+ 2c

\rm :\longmapsto\: log( {r}^{2} ) +  {\theta }^{2} = d

Answered by XxItzAdyashaxX
4

Answer:

We have, r

2

=a

2

cos4θ=a

2

(1−2sin

2

2θ)...(1)

Differentiating w.r.t. θ, we get

2r

dr

=−4a

2

sin4θ...(2)

Eliminating a from (2) using (1), we get

r

2

dr

=−

cos4θ

4sin4θ

...(3)

Replacing

dr

with −r

2

dr

in (3), we get

2r

dr

=

cosθ

4sin4θ

r

2

dr=

sinθ

cosθ

Integrating, we get

2logr=

4

1

logsin4θ+2logc

⟹r

8

=c

8

sin4θ

Similar questions