Math, asked by bondugulasuvarnarani, 5 months ago

find the orthogonal trajectories of x^2+y^2=cx​

Answers

Answered by shadowsabers03
6

We're asked to find the orthogonal trajectory of the family of curves,

\longrightarrow x^2+y^2=cx\quad\quad\dots(1)

Differentiating wrt x,

\longrightarrow 2x+2y\,\dfrac{dy}{dx}=c

Putting this value of c in (1),

\longrightarrow x^2+y^2=\left(2x+2y\,\dfrac{dy}{dx}\right)x

\longrightarrow x^2+y^2=2x^2+2xy\,\dfrac{dy}{dx}

\longrightarrow x^2-y^2+2xy\,\dfrac{dy}{dx}=0

This is the differential equation of the given family of curves.

To obtain its orthogonal trajectory, replace \dfrac{dy}{dx} by -\dfrac{dx}{dy} because we know that the product of gradients equals -1 if the curves are perpendicular to each other.

Then,

\longrightarrow x^2-y^2+2xy\left(-\dfrac{dx}{dy}\right)=0

\longrightarrow x^2-2xy\,\dfrac{dx}{dy}=y^2

Multiply each term by f(y) which is a function in y only.

\longrightarrow x^2f(y)-2xy\,\dfrac{dx}{dy}f(y)=y^2f(y)

\longrightarrow x^2f(y)+2x\,\dfrac{dx}{dy}\left(-y\,f(y)\right)=y^2f(y)

Assume \dfrac{d}{dy}\left[-y\,f(y)\right]=f(y) such that the equation becomes,

\longrightarrow\dfrac{d}{dy}\left[-x^2y\,f(y)\right]=y^2f(y)\quad\quad\dots(2)

Now,

\displaystyle\longrightarrow\dfrac{d}{dy}\left[-y\,f(y)\right]=f(y)

\displaystyle\longrightarrow\dfrac{d}{dy}\left[y\,f(y)\right]=-f(y)

\displaystyle\longrightarrow f(y)+y\,f'(y)=-f(y)

\displaystyle\longrightarrow y\,f'(y)=-2f(y)

\displaystyle\longrightarrow\dfrac{f'(y)}{f(y)}=-\dfrac{2}{y}

Multilying by dy and integrating,

\displaystyle\longrightarrow\int\dfrac{f'(y)}{f(y)}\ dy=-2\int\dfrac{1}{y}\ dy

\displaystyle\longrightarrow\log|f(y)|=-2\log|y|+\log\left|C_1\right|

\displaystyle\longrightarrow f(y)=\dfrac{C_1}{y^2}

Then (2) becomes,

\longrightarrow\dfrac{d}{dy}\left[-\dfrac{C_1x^2}{y}\right]=C_1

\longrightarrow\dfrac{d}{dy}\left[\dfrac{x^2}{y}\right]=-1

\longrightarrow d\left[\dfrac{x^2}{y}\right]=-dy

Integrating,

\displaystyle\longrightarrow \dfrac{x^2}{y}=-\int dy

\displaystyle\longrightarrow \dfrac{x^2}{y}=-y+c'

\displaystyle\longrightarrow\underline{\underline{x^2+y^2=c'y}}

This is the orthogonal trajectory where c' is an arbitrary constant.

Similar questions
English, 11 months ago