Math, asked by MagicianOm6207, 1 month ago

find the orthogonal trajectory of the family of circlesx2+y2+2gx+C =0 where 'g' is a parameter​

Answers

Answered by mathdude500
42

\large\underline{\sf{Solution-}}

The given curve is

\bf :\longmapsto\: {x}^{2} +  {y}^{2} + 2gx  + c = 0 -  -  - (1)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:2x + 2y\dfrac{dy}{dx} + 2g = 0

\rm :\longmapsto\:x + y\dfrac{dy}{dx} + g = 0

\rm :\longmapsto\: - x  - y\dfrac{dy}{dx} =  g

\bf :\longmapsto\: g \:  =  \: - (x +  y\dfrac{dy}{dx}) -  -  - (2)

On substituting the value of g in equation (1), we get

\rm :\longmapsto\: {x}^{2} +  {y}^{2}  - 2x\bigg(x + \dfrac{dy}{dx}\bigg) + c = 0

Now,

\bf :\longmapsto\:Replace \: \dfrac{dy}{dx} =  -  \: \dfrac{dx}{dy}

\rm :\longmapsto\: {x}^{2} +  {y}^{2}  - 2x\bigg(x  -  \dfrac{dx}{dy}\bigg) + c = 0

\rm :\longmapsto\: {x}^{2} +  {y}^{2} -  {2x}^{2} + 2xy\dfrac{dx}{dy} + c = 0

\rm :\longmapsto\: -  {x}^{2} +  {y}^{2}+ 2xy\dfrac{dx}{dy} + c = 0

\rm :\longmapsto\: -  {x}^{2}+ 2xy\dfrac{dx}{dy} =  - c -  {y}^{2}

\rm :\longmapsto\: 2xy\dfrac{dx}{dy} -  {x}^{2}  =  - c -  {y}^{2}

Divide both sides by y, we get

\rm :\longmapsto\:2x\dfrac{dx}{dy} - \dfrac{ {x}^{2} }{y} =  - y - \dfrac{c}{y}   -  -  - (2)

\red{\rm :\longmapsto\:Put \:  {x}^{2} = t}  \\ \red{\rm :\longmapsto\:2x\dfrac{dx}{dy} = \dfrac{dt}{dy}}

So, equation (2) can be rewritten as

\rm :\longmapsto\:\dfrac{dt}{dy}  - \dfrac{t}{y}  =  - y - \dfrac{c}{y}

☆ which is the form of Linear Differential equation

☆ On comparing with,

\bf :\longmapsto\:\dfrac{dt}{dy} + pt = q

☆ On comparing we get,

\red{\rm :\longmapsto\:p =  - \dfrac{1}{y}} \\ \red{\rm :\longmapsto\:q =  - y - \dfrac{c}{y}}

Therefore,

☆ Integrating Factor is evaluated as

\rm :\longmapsto\:I.F. =  {e}^{ \displaystyle \int \sf \: pdy}

\rm :\longmapsto\:I.F. =  {e}^{ \displaystyle \int \sf \:  - \dfrac{1}{y} dy}

\rm :\longmapsto\:I.F. =   {e}^{ -  log(y) }

\rm :\longmapsto\:I.F. =   {e}^{log {y}^{ - 1} }

\bf\implies \:I.F. =  {y}^{ - 1}  = \dfrac{1}{y}

Hence,

☆ Solution of equation is given by

\rm :\longmapsto\:t \times I.F. =  \displaystyle \int  \sf\: (q \times I.F.)dy

\rm :\longmapsto\:t \times \dfrac{1}{y}  =  \displaystyle \int  \sf\: \bigg( - y - \dfrac{c}{y} \bigg)  \times \dfrac{1}{y} \:  \: dy

\rm :\longmapsto\:\dfrac{t}{y}  =  \displaystyle \int  \sf\:  \bigg( - 1- \dfrac{c}{ {y}^{2} } \bigg)dy

\rm :\longmapsto\:\dfrac{t}{y}  =   - y +  \dfrac{c}{y}  + d

\rm :\longmapsto\:\dfrac{ {x}^{2} }{y}  =   - y +  \dfrac{c}{y}  + d

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: {x}^{2} = t  \bigg \}}

\rm :\longmapsto\:\dfrac{ {x}^{2} }{y}  = \dfrac{ -  {y}^{2} + c + dy }{y}

\rm :\longmapsto\: {x}^{2} =  -  {y}^{2} + c + dy

\rm :\longmapsto\: {x}^{2} + {y}^{2}  - c  - dy = 0 \: where \: d \: is \: arbitrary \: constant.

Answered by upi5176
4

Answer:

Given curve is

  • x^+y^+2gx+c=0__(1)eq

differentiating w.r.t.x.we have

  • 2x+2ydy/dx+2g=0
  • 2(x+ydy/dx+g)=0
  • x+ydy/dx+g=0/2
  • x+ydy/dx+g=0
  • g=-x-ydy/dx
  • g=-(x+ydy/dx)__(2)eq

subtutiting (1)eq in (2)eq

  • x^+y^+2(-(x+ydy/dx))x+c=0
  • x^+y^-2x^_2xydy/dx+c=0
  • y^-x^-2xydy/dx+c=0

This is differential equation of eq(1),

we replace,(dy/dx=-dx/dy)

  • y^-x^-2xy(-dx/dy)+c=0
  • y^-x^+2xydx/dy+c=0
  • 2xydx/dy-x^=-c-y^

Dividing "y" on both sides

  • 2xdx/dy-x^/y=-(c+y^/y)__(3)eq

let x^=z

D.w.r.t."x".o.b.s

2xdx/dy=dz/dy

  • (3)__dz/dy-1/y.x^=-(c+y^/y)

This is in the from of

( dz/dy+pz=q )

Here,p=-1/y;q=-(c+y^/y)

l.F=e~pdy

=e~-1/ydy

=e-logy

=elogy

l.F=1/y

General solution is

  • (I.F)z=~q(I.F)dy+c1
  • 1/y.z=~-(c+y^/y)(1/y)dy+c1
  • x^/y=-~(c+y^/y^)dy+c1
  • x^/y=-~(c/y^+1)dy+c1
  • x^/y=-~(1/y^.c+1)dy+c1
  • x^/y=-~(y*2.c+1)dy+c1
  • x^/y=-y*-2+1/-2+1.c-y+c1
  • x^/y=-y*-1/-1.c-y+c1
  • x^/y=y*-1.c-y+c1
  • x^/y=1/y.c-y+c1
  • x^/y=c/y-y+c1
  • x^/y=c-y^+c1y/y
  • x^=c-y^+c1y
  • x^+y^-c-c1y=0

The orthogonal trajectory is

  • {x^+y^-c-c1y=0}

Similar questions