Math, asked by shubhamhottie, 11 months ago


find the orthogonal trajectory of
x² + cy² = 1 ​

Answers

Answered by mysticd
7

 Given \:x^{2} + cy^{2} = 1

 \implies cy^{2} = 1 - x^{2}

 \implies c = \frac{1 - x^{2}}{y^{2}}

/* Do the Differentiation both sides , we get */

\implies 0 = \frac{y^{2} ( -2x) - (1-x^{2})\times 2y\frac{dy}{dx}}{y^{4}}

 \implies 0 = -2xy^{2} + 2y(x^{2}-1)\frac{dy}{dx}

 \implies 2xy^{2} = 2y(x^{2}-1)\frac{dy}{dx}

 \implies \frac{xy}{x^{2}-1} = \frac{dy}{dx}

 Differential \:equation \:of\\Orthogonal \: trajectory

 -\frac{dx}{dy} = \frac{xy}{x^{2}-1}

 \implies - \int \frac{x^{2}-1}{x} = \int y dy

 \implies - \int \Big( x - \frac{1}{x}\Big) dx = \int y dy

 \implies -x + log x = \frac{y^{2}}{2} + c

 \green { This \:is \:\:equation\:of \: Orthogonal}\\\green { trajectory \:of \: given \: family\:of \:curves}

•••♪

Answered by tejaspise000
0

Answer:

hi

Step-by-step explanation:

Similar questions